

OpenFOAM® Basic Training

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Table of Contents

Editor:

• Bahram Haddadi

Technische Universität Wien
Institute of Chemical, Environmental

& Bioscience Engineering

Compatibility:

• OpenFOAM® v12

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work

Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Table of Contents

This tutorial series introduces OpenFOAM®, a widely used open-source
software for Computational Fluid Dynamics (CFD). Fourteen case examples
help the users to learn essential OpenFOAM® tools and functions. These
examples cover different aspects such as mesh generation, multiphase
modeling, turbulence modeling, parallel processing and reaction modeling.

Where to Find Tutorial Cases?
The base tutorial cases can be accessed directly from OpenFOAM® installation
directory or will be compiled in step-by-step approach.

Compatibility with OpenFOAM® Versions
These tutorials are designed primarily for OpenFOAM® v12 (Foundation
version – www.openfoam.org). However, they can also be adapted for other
OpenFOAM® versions, such as:

• ESI-OpenFOAM® (maintained by OpenCFD)
• Foam-extend (a community-driven fork with additional features)

Tutorial Structure
Each case example follows a structured learning approach:
0. Background: overview of the key concepts covered in the tutorial and the

CFD principles related to the case.
1. Pre-processing: step-by-step setup of the case, including directory

structure, essential input files (dictionaries), and necessary modifications.
2. Running the simulation: instructions on executing the solver, running

necessary commands, and monitoring the progress of the simulation.
3. Post-processing: analyzing the simulation results using OpenFOAM®'s

built-in tools and the visualization software ParaView v5.x.

By following these tutorials, users will gain hands-on experience in setting up,
running, and analyzing CFD simulations in OpenFOAM®.

OpenFOAM® Basic Training

Table of Contents

Tutorial One: Basic Case Setup

Solver: icoFoam
Geometry: 2-dimensional
Tutorial: elbow

Tutorial Two: Built in Mesh

Solver: fluid
Geometry: 2-dimensional
Tutorial: forwardStep

Tutorial Three: Patching Fields

Solver: fluid
Geometry: 1-dimensional
Tutorial: shockTube

Tutorial Four: Discretization – Part 1

Solver: functions
Geometry: 1-dimensional
Tutorial: shockTube

Tutorial Five: Discretization – Part 2

Solver: functions
Geometry: 2-dimensional
Tutorial: circle

Tutorial Six: Turbulence, Steady state

Solver: incompressibleFluid
Geometry: 2-dimensional
Tutorial: pitzDaily

Tutorial Seven: Turbulence, Transient

Solver: incompressibleFluid
Geometry: 2-dimensional
Tutorial: pitzDaily

Tutorial Eight: Multiphase - VoF

Solver: incompressibleVoF
Geometry: 2-dimensional
Tutorial: damBreak

OpenFOAM® Basic Training

Table of Contents

Tutorial Nine: Parallel Processing

Solver: compressibleVoF
Geometry: 3-dimensional
Tutorial: depthCharge3D

Tutorial Ten: Residence Time Distribution

Solver: incompressibleFluid, functions
Geometry: 3-dimensional
Tutorial: TJunction

Tutorial Eleven: Reaction

Solver: multicomponentFluid
Geometry: 3-dimensional
Tutorial: reactingElbow

Tutorial Twelve: snappyHexMesh – Single Region

Solver: snappyHexMesh, functions
Geometry: 3-dimensional
Tutorial: flange

Tutorial Thirteen: snappyHexMesh – Multi Region

Solver: snappyHexMesh, fluid, solid
Geometry: 3-dimensional
Tutorial: snappyMultiRegionHeater

Tutorial Fourteen: Sampling

Solver: fluid
Geometry: 3-dimensional
Tutorial: shockTube

Appendix A: Important Commands in Linux

Appendix B: Running OpenFOAM®

Appendix C: Frequently Asked Questions (FAQ)

Appendix D: ParaView

OpenFOAM® Basic Training

Tutorial One

Tutorial One

Basic Case Setup

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial One

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial One

Background

1. What is CFD?

Computational Fluid Dynamics (CFD) is a method used to analyze systems
involving fluid flow, heat transfer, and related phenomena such as heat and
mass transfer. This analysis is performed through computer-based simulations,
which help in understanding how fluids behave under different conditions. CFD
is a powerful tool used in a variety of fields, including aerospace, automotive,
chemical engineering, environmental studies, and biomedical applications.

The goal of CFD development is to create tools that are as reliable as other
computer-aided engineering (CAE) methods like stress analysis. However,
CFD is trickier due to the complex nature of fluid flow, which involves
turbulence, variable properties, and nonlinear behavior. The mathematical
foundation of CFD is based on the Navier-Stokes and continuity equations,
which describe the motion of fluid substances and are derived from
fundamental conservation laws (mass and momentum). These equations are
partial differential equations that represent how fluid velocity, pressure, and
density change over time and space.

While CFD offers many advantages, such as cost reduction in experimental
setups and the ability to simulate complex scenarios, it is not fully automated.
A good understanding of the underlying physics is necessary to set up a reliable
simulation and interpret results correctly. Additionally, even with advanced
computational resources, real-time simulations are still challenging due to the
intensive calculations required. CFD is typically used alongside experimental
methods like wind tunnel testing to validate and improve results.

CFD software comes in two main types:

• Open-source and free (e.g., OpenFOAM®): Offers flexibility for
modification and customization, making it popular in academic and
research environments.

• Commercial and closed source (e.g., ANSYS Fluent, COMSOL):
Provides user-friendly interfaces, technical support, and advanced
features, making it suitable for industrial applications.

In this guide, the focus will be on OpenFOAM®, an open-source CFD software
written in C++. It allows users to access, modify, and even develop custom
solvers to meet specific research or industrial needs. OpenFOAM® is widely
used due to its flexibility and extensive documentation, although it requires a
good understanding of both CFD principles and programming basics.

For beginners, it's helpful to think of CFD as a "virtual wind tunnel" where you
can simulate fluid flow without physically building models or conducting real-
world experiments. This makes it a cost-effective and versatile tool, especially
during the design and testing phases of engineering projects.

CFD is not only limited to air and water flow simulations, and it is extensively
used in modeling different sophisticated processes such as: weather patterns
(meteorology), blood flow in arteries (biomedical engineering), combustion

OpenFOAM® Basic Training

Tutorial One

processes in engines (mechanical engineering), pollution dispersion in the
atmosphere (environmental engineering) and many more!

2. Workflow of CFD

A typical CFD workflow consists of three main stages:

2.1 Pre-processing

This stage involves setting up the simulation, including:

• Geometry Definition: Creating the computational domain that
represents the physical system. This can be done using CAD
(Computer-Aided Design) software or built-in geometry tools in CFD
software. The accuracy of geometry affects how well simulation
represents the real-world scenario. Think of geometry as the "shape" or
"structure" through which the fluid will flow. Beginners can start with
simple geometries like pipes, ducts, or channels before progressing to
complex designs.

• Mesh Generation: Dividing the domain into smaller, non-overlapping
elements (cells) to form a grid. The quality and density of the mesh
significantly affect the accuracy of the simulation. Finer meshes are used
in regions with high gradients (e.g., near walls, sharp edges, or around
obstacles), while coarser meshes suffice for uniform flow areas. Meshes
can be structured (regular grids) or unstructured (irregular shapes),
depending on the complexity of the geometry. A structured mesh is
easier to generate and solve but less flexible for complex geometries,
while an unstructured mesh can fit intricate shapes better. Imagine the
mesh as a net spread over your geometry. The tighter the net (finer
mesh), the more detailed your simulation results will be. However, this
also increases computational effort, so there's a balance to be found.

• Model Selection: Choosing physical models to represent phenomena
such as turbulence (e.g., k-epsilon, k-omega models), heat transfer, and
chemical reactions. The selection depends on the flow regime (laminar
or turbulent) and the specific application.

• Fluid Properties: Defining parameters like density, viscosity, thermal
conductivity, and specific heat capacity. These properties vary with
temperature, pressure, or composition in complex simulations.
Incompressible flow assumes constant density, while compressible flow
accounts for changes in density due to pressure and temperature
variations.

• Boundary and Initial Conditions: Setting conditions at the domain's
boundaries (e.g., velocity at an inlet, pressure at an outlet, wall
conditions) and initial conditions for transient simulations. Proper
boundary conditions are crucial for accurate results.

The solution variables (e.g., velocity, pressure, temperature) are calculated at
specific points within each cell. The mesh's resolution influences the

OpenFOAM® Basic Training

Tutorial One

simulation's accuracy and computational cost. A mesh independence study is
often performed to ensure that the results are not sensitive to the mesh size.
This involves running simulations with progressively finer meshes until the
changes in results become negligible.

Tip for beginners: Start with a coarser mesh to get quick results, then gradually
refine the mesh to see how it affects accuracy. This helps you learn how
sensitive your simulation is to mesh density.

2.2 Solver

In this stage, numerical methods are applied to solve the governing equations
of fluid flow, including:

• Conservation Equations: Mass, momentum, and energy conservation
laws are integrated over each control volume. These equations are often
coupled, meaning changes in one variable affect others. For example,
changes in velocity can influence pressure and vice versa.

• Discretization: The continuous equations are converted into algebraic
forms using methods like the finite volume method (FVM), which ensures
conservation principles are maintained within each cell. Other methods
include the finite difference method (FDM) and finite element method
(FEM), though FVM is most common in CFD. Discretization involves
approximating derivatives with algebraic expressions, allowing the
equations to be solved numerically.

• Solution Techniques: The resulting algebraic equations are solved
iteratively until convergence is achieved. Common iterative solvers
include the SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) and PISO (Pressure-Implicit with Splitting of Operators)
algorithms. Convergence is determined when changes in the solution
between iterations fall below a predefined threshold.

The finite volume method is widely used because it ensures the conservation
of physical quantities within each control volume, making it both accurate and
robust. It is also flexible for handling complex geometries and boundary
conditions.

Think of the solver as the "engine" of CFD—it's where all the heavy lifting
happens to calculate how the fluid moves. Understanding how the solver works
helps in troubleshooting and optimizing simulations.

2.3 Post-processing

This stage involves analyzing and visualizing the simulation results. Key tasks
include:

• Visualization: Using cutting planes, contour plots, vector fields,
streamlines, and line plots to represent flow variables such as velocity,
pressure, and temperature distributions. Visualization helps in identifying
flow patterns, vortices, and areas of interest like high-pressure zones.

OpenFOAM® Basic Training

Tutorial One

• Data Analysis: Evaluating physical quantities like forces (drag, lift), heat
transfer rates, pressure drops, and flow rates. Quantitative analysis
helps validate the simulation results against experimental data or
theoretical predictions.

• Validation: Comparing simulation results with experimental data or
theoretical models to ensure accuracy. Sensitivity analysis may be
conducted to understand the influence of different parameters.

Popular post-processing tools include commercial software like TecPlot and
Ensight, as well as open-source tools such as ParaView and SALOME. These
tools allow for advanced visualization techniques, including 3D rendering and
time-dependent animations, making it easier to interpret complex flow
behaviors.

Tip: Post-processing is not just about making pretty pictures. It helps you
understand the flow physics and detect any errors or inconsistencies in your
simulation.

3. icoFoam Solver

icoFoam is an OpenFOAM® solver suitable for analyzing incompressible,
laminar flow of Newtonian fluids. It is based on the PISO algorithm (pressure-
implicit split-operator), which is essentially a pressure-velocity iterative
procedure for transient problems. In each iterative step, PISO solves the
momentum equation using one predictor step, with two further corrector steps
for both velocity and pressure.

OpenFOAM® Basic Training

Tutorial One

icoFoam – elbow

Tutorial outline

Using icoFoam solver, simulate 75 s of flow in an elbow for the following
GAMBIT® meshes:

• Tri-mesh (comes with OpenFOAM® tutorial)

• Hex-mesh coarse (check GAMBIT® “elbow 2D” tutorial)

• 2 times finer hex-mesh (refined previous step mesh)

Objectives

• Basic case setup in OpenFOAM®

• Setting up initial values of p and U

• Ensuring proper boundary definitions (imported boundaries from
GAMBIT®, additional surfaces during conversion and boundaries definition in
OpenFOAM®)

Data processing

Import your simulation to ParaView, extract data to make two diagrams (using
spreadsheet calculators) of pressure and velocity magnitude along a line
between two tubes, do the same for all three simulations.

OpenFOAM® Basic Training

Tutorial One

1. Pre-processing

1.1. Setting system environment

Make sure your system environment is set correctly under the chosen version
of OpenFOAM® (v12), check Appendix B Part A.

1.2. Copying tutorial

Open a terminal and copy the elbow tutorial from the following path to your
working directory (see Appendix A for running a terminal in Linux):

$FOAM_TUTORIALS/legacy/incompressible/icoFoam/elbow

Note: The ‘$FOAM_TUTORIALS’ allows the tutorial to be extracted from the
tutorial folder in the installation directory of OpenFOAM® under the current
system environment.

Note: The tutorial can also be simply copied from the mentioned directory using
your file explorer.

1.3. Converting mesh

The mesh, which is produced by GAMBIT®, is not directly compatible with
OpenFOAM®. First, the mesh needs to be converted to an OpenFOAM® mesh,
using the following tool:

>fluentMeshToFoam elbow.msh

Note: the ‘>’ sign is not part of the command. It is only used to show that the
command should be typed inside a terminal.

If the mesh was created in mm and is converted using the mentioned command
it will convert the mesh with wrong dimensions, since all the units in
OpenFOAM® are SI Units (International System of Units).

There are different flags included with most of OpenFOAM® tools, for checking
them use the flag -help after the command, e.g.:

>fluentMeshToFoam –help

The output gives an overview of available options of the tool and a short
description on how to use it:

Usage: fluentMeshToFoam [OPTIONS] <Fluent mesh file>

options:

 -2D <thickness> use when converting a 2-D mesh (applied before scale)

 -case <dir> specify alternate case directory, default is the cwd

 -fileHandler <handler>

 override the fileHandler

 -libs <(lib1 .. libN)>

 pre-load libraries

 -noFunctionObjects

 do not execute functionObjects

 -scale <factor> geometry scaling factor - default is 1

 -writeSets write cell zones and patches as sets

 -writeZones write cell zones as zones

OpenFOAM® Basic Training

Tutorial One

 -srcDoc display source code in browser

 -doc display application documentation in browser

 -help print the usage

Using: OpenFOAM-10 (see https://openfoam.org)

Build: 10

The -scale flag is used for converting the mesh dimensions from other units

to SI units, e.g. if the mesh was created in mm it will be converted to meter by
using -scale 0.001 (which is not the case in this tutorial):

>fluentMeshToFoam elbow.msh -scale 0.001

Note: The mesh which is imported to OpenFOAM® should be a three-
dimensional mesh. For carrying out 2D (also 1D) simulations, a three-
dimensional mesh should be created with just one cell in the third dimension
(for 1D, one cell in the second and one cell in the third direction).

Note: If there are internal boundaries in the mesh, there is another tool,
fluent3DMeshToFoam. Using this tool, the internal boundaries will be kept
during conversion.

1.4. Case structure

Most of the cases in OpenFOAM® have the following basic case structure
(directory tree):

There are three main directories (0, constant, system) in each case folder:

1.4.1. 0 directory

The 0 directory includes the initial and boundary conditions for running the
simulation. In each file in this folder, the initial conditions for one property can
be set. The files are named after the property they are standing for, e.g. usually

https://openfoam.org/

OpenFOAM® Basic Training

Tutorial One

p file includes pressure initial and boundary conditions. In the elbow example,
there are only two files inside the 0 directory, p and U. p stands for pressure
and U stands for velocity. Checking p:

>nano p

Note: nano is the command line based text editor, which comes by default with
Ubuntu. You can use any other text editor (also graphical ones) for opening and
editing the files.

Note: You can use ctrl+x for closing and exiting the nano.

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Website: https://openfoam.org |

| \\ / A nd | Version: 12 |

| \\/ M anipulation | |

---/

FoamFile

{

 format ascii;

 class volScalarField;

 object p;

}

// *

* * * * * *//

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

 wall-4

 {

 type zeroGradient;

 }

 velocity-inlet-5

 {

 type zeroGradient;

 }

 velocity-inlet-6

 {

 type zeroGradient;

 }

 pressure-outlet-7

 {

 type fixedValue;

 value uniform 0;

 }

 wall-8

 {

 type zeroGradient;

 }

 frontAndBackPlanes

 {

 type empty;

 }

}

// *

* * * * * *//

OpenFOAM® Basic Training

Tutorial One

In dimensions, the physical dimension according to SI base units of the

quantity is defined, for example here it shows that the p dimension is (m/s)2.

Note: In the dimension matrix the first number represents mass (kilogram), the
second one the length (meter), the third one time (second), the fourth one the
temperature (Kelvin), the fifth one the quantity (mole), the sixth one current
(ampere) and the last one luminous intensity (candela).

Note: As you can see the p unit is not the pressure unit (Pa). It is because in
incompressible solvers in OpenFOAM® p is defined as pressure divided by
density.

The internalField sets the initial field of a specific quantity in the solution

domain. There are two types: uniform and non-uniform. Uniform field assigns a
single value to all cells, whereas non-uniform field specifies a unique value to
each field element.

The type of each of our boundaries as well as the value of this quantity on the
boundaries is defined in the boundaryField. There are many different types

of boundary conditions in OpenFOAM®, a few very common ones:

- zeroGradient: Applies a zero gradient boundary type to this boundary

(Neumann boundary condition).

- fixedValue: Applies a fixed value to this boundary (Dirichlet boundary

condition).

- empty: It is for sides, which are vertical to the direction that is not going

to be considered (e.g. in 2D simulations these boundaries are vertical to
the third dimension). In this boundary type both sides vertical to one
dimension should be selected together and named as one boundary.

Note: If a fixedValue boundary condition with value equals

$internalField is used, it is equal to using zeroGradient, except

zeroGradient applies the boundary condition implicitly, but fixedValue

with $internalField value applies the boundary condition explicitly.

The U file has to be defined via three components (since velocity is a vector):
first one stands for the x component, second one for the y component, and the
third one for the z component of the velocity. For this case setup the z
component is always zero because it is a 2D simulation and no calculations will
be done in the z direction. The boundaries vertical to z direction have been
already set to empty.

1.4.2. constant directory

The constant directory usually consists of the mesh subdirectory and some
files. In the sub-directory “polyMesh” the mesh data are stored (in this case the
data for imported mesh). Among the files in the polyMesh directory, the
boundary file is relevant for users and includes the mesh boundary data, e.g.
name, type and the patch group which can be modified by the user for changing
the boundary type or name for a created or imported mesh (for the sake of
space, the dictionary headers will not be included in this scope anymore):

OpenFOAM® Basic Training

Tutorial One

// *

* * * * * *//

6

(

 wall-4

 {

 type wall;

 inGroups List<word> 1(wall)

 nFaces 100;

 startFace 1300;

 }

 velocity-inlet-5

 {

 type patch;

 nFaces 8;

 startFace 1400;

 }

…

 frontAndBackPlanes

 {

 type empty;

 inGroups List<word> 1(empty);

 nFaces 1836;

 startFace 1454;

 }

)

// *

* * * * * *//

Comparing the boundary names and types with the ones set in GAMBIT®, they
should be the same.

Note: However, in terms of boundary type, empty boundary condition does not
exist in GAMBIT®. All the faces perpendicular to the direction, which is not going
to be considered, are defined as a new boundary with type wall. After importing
the mesh to OpenFOAM®, modify that boundary in the file constant/polyMesh/
boundary, and change its type from wall to empty, and change inGroups

from wall to empty. In this case, after converting the mesh, the face

frontAndBackPlanes needs to be modified for both hex-mesh and finer hex-

mesh.

The files in the constant directory (usually) include material properties,
simulation physics and chemistry, e.g. by opening the physicalProperties file,
properties dimensions and the property value can be found and edited, e.g.:

nu [0 2 -1 0 0 0 0] 0.01;

nu is the fluid kinematic viscosity, which is 0.01 m2/s for this example.

1.4.3. system directory

Solver and finite volume methods settings can be found and changed in this
directory. There are three main files in this directory:

- fvSchemes: The discretization scheme used for each term of the
equations are set in this file (it will be discussed in more detail in the next
tutorials).

- fvSolution: Contains the settings to the coupling method of pressure
and velocity, the numerical methods, which are used for solving different
quantities, and the final tolerance for convergence of that quantity.

OpenFOAM® Basic Training

Tutorial One

- controlDict: The time from where simulation starts (startFrom), the

time when the simulation finishes (stopAt), the time step (deltaT), the

data saving interval (writeInterval), the saved data file format

(writeFormat), the saved file data precision (writePrecision), and

also if changing the files during the run can affect the run or not
(runTimeModifiable) are set in this file.

Note: If the write format is ascii, then the simulation data which is written to

the file can be opened and read using any text editor. If the format is binary,

the data will be written in binary style and is not readable by text editors. The
advantage of binary over ascii is the smaller file size, and consequently faster
conversion and writing to disk, for big simulations.

// *

* * * * * *//

application icoFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 75;

deltaT 0.05;

writeControl timeStep;

writeInterval 20;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

// *

* * * * * *//

Note: This simulation continues from the last time step data, which is saved
(latestTime). If there was no saved data, it will start from start time

(startTime), which is zero in this case.

Note: Our first modification in the simulation is changing the endTime from the

original value of 10s to 75s, for running the simulation up to 75s.

OpenFOAM® Basic Training

Tutorial One

2. Running simulation

The simulation can be run by typing the solver’s name and executing it:

>icoFoam

Note: For running the simulation, the solver command (e.g. icoFoam) should
be executed inside the copy of the tutorial main folder. For example: The
command should be executed in the elbow folder, if it was run at some
subfolders or somewhere else, the simulation will fail.

3. Post-processing

3.1. Exporting simulation data

The data files created by OpenFOAM® should be exported (converted) by the
appropriate tools, to the post processing tools data format. For ParaView:

>foamToVTK

where VTK is the ParaView data format. This command should be also
executed in the case main directory, e.g. elbow. Here, ParaView is used as the
post-processing tool, for running it

>paraview &

Note: Another option to open the OpenFOAM® simulation results with ParaView
without converting them to VTK; Create an empty text file in the main case
directory, name it <someName>.foam (e.g. foam.foam), and execute the
following command. This method is good for fast evaluation of the data in the
middle of the simulation or with a decomposed case in parallel simulations:

>paraview foam.foam &

Note: By putting & at the end of command, the command line will remain active
and ready for further inputs while that program is running.

3.2. Examining different meshes

Do the same for the other two meshes. Only the mesh for the first simulation is
included in the elbow example of OpenFOAM®. For the other two simulations,
the mesh should be provided by the user. For finding the tutorials on how to
create the geometry and the mesh, search the internet for “GAMBIT® elbow
mesh 2D”. The dimensions and the mesh info are provided in that tutorial. Try
to create it by using GAMBIT® (or any other similar mesh creation tools). When
you are done, you have to convert it into a 3D mesh with one cell in the z-
direction.

The comparisons of all three case results and charts are shown below.

OpenFOAM® Basic Training

Tutorial One

The Hex Fine mesh

Pressure and velocity for different meshes at t=75 s, along the arc shown

OpenFOAM® Basic Training

Tutorial One

The comparison plots are along the line between points A (54 0 0) at the small
tube entrance and B (60 60 0) at the large tube exit part (length units are in
meter) for Tri-mesh, for other two meshes created using GAMBIT® the points
are A (22 -33 0) and B (27 30 0).

Mesh Pressure Velocity

Tri

Hex

Hex

Fine

Comparison of different mesh type results at t = 75 s

OpenFOAM® Basic Training

Tutorial One

Note: For extracting data over a line, the line should be defined in ParaView
using “Plot Over Line”, then the data over this line can be exported by choosing
Save Data from File menu in ParaView.

Tutorial Two

Built in Mesh

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Two

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Two

Background

1. What is Mesh?

When studying fluid flow and heat transfer, mathematical equations known as
partial differential equations (PDEs) describe how physical properties such as
mass, energy, and momentum change over space and time. However, solving
these equations directly (analytically) is extremely difficult unless the problem
is very simple.

To solve PDEs numerically, these equations are discretized and converted from
a set of PDEs to a set of algebraic equations. This involves breaking the entire
fluid domain into many smaller, manageable sections. These small sections are
called grid cells, and together they form a mesh.

A mesh is like a net or grid that covers the entire area where fluid behavior is
analyzed. The finer (smaller) the mesh, the more accurately flow details can be
captured, but at the cost of increased computational demand. Choosing the
right mesh ensures a balance between accuracy and efficiency in simulations.

One of the most common numerical methods for solving these equations is the
finite volume method (FVM), which is explained below.

2. The Finite Volume Method (FVM)

OpenFOAM® applies the finite volume method (FVM) to simulate fluid flow. This
method works by applying a key equation called the transport equation, which
describes how physical property (such as velocity, temperature, or pressure)
moves through a fluid domain over time. The general transport equation is:

𝜕(𝜌𝜑)

𝜕𝑡
+ ∇ ∙ (𝜌𝜑𝒖) = ∇ ∙ (𝛤∇𝜑) + 𝑆𝜑

Rate of change
of φ inside fluid

element
+

Net rate of flow
of φ out of fluid

element
=

Rate of change of
φ due to diffusion

+
Rate of change of φ

due to sources

The finite volume method works by applying and integrating this equation over
a control volume (CV), which is a small section of the mesh. A mathematical
technique called the Gauss divergence theorem helps converting volume
integral terms in the equation into surface integrals. This allows for the
calculation of the amount of a property entering and exiting each grid cell,
ensuring that all properties are conserved throughout the simulation.

∫
𝜕

𝜕𝑡
(∫ 𝜌𝜑

𝐶𝑉

𝑑𝑉) 𝑑𝑡
∆𝑡

+ ∫ ∫ 𝒏 ∙ (𝜌𝜑𝒖)
𝐴

𝑑𝐴𝑑𝑡
∆𝑡

= ∫ ∫ 𝒏 ∙ (𝛤∇𝜑)
𝐴

𝑑𝐴𝑑𝑡
∆𝑡

+ ∫ ∫ 𝑆𝜑𝑑𝑉
𝐶𝑉

𝑑𝑡
∆𝑡

For time-dependent problems, the equation must also be integrated over a
small time step (Δt\Delta t) to account for changes in properties over time. This

OpenFOAM® Basic Training

Tutorial Two

step-by-step approach is essential for accurately capturing transient behaviors,
such as turbulence or shock waves.

3. Discretization of Transport Equations

Discretization of the transport equations is critical to the finite volume method
and is done using the mesh, which involves dividing the domain into smaller
regions.

In CFD, the meshes can be divided into two main categories:

• Structured meshes: These are arranged in a regular, grid-like pattern,
often using Cartesian coordinates (X, Y, Z directions). They are simple
to use but may not work well for complex geometries.

• Unstructured meshes: These use irregularly shaped grid cells and can
represent complex shapes, such as curved surfaces and complex
objects, more accurately.

Mesh generation in OpenFOAM® is done using built-in tools such as blockMesh
(for structured meshes) and snappyHexMesh (for unstructured meshes).
External software like GAMBIT® can also be used for creating meshes. This
tutorial focuses on using blockMesh, which provides a simple way to generate
structured grids. More advanced mesh generation using snappyHexMesh is
covered in Tutorial Twelve.

4. foamRun Solver – fluid module

In OpenFOAM® 12, the foamRun application serves as a versatile tool for
executing various solver modules. Unlike traditional/legacy solvers (e.g.
icoFoam) that are specific to certain types of simulations, foamRun dynamically
loads and runs a solver module which can be either defined in the simulation
setup or as a command-line argument. This modular approach enhances
flexibility, allowing users to select appropriate solver modules for their specific
simulation needs.

“fluid” is the solver module for steady or transient turbulent flow of compressible
fluids with heat-transfer with optional mesh motion and change.

OpenFOAM® Basic Training

Tutorial Two

fluid Solver – forwardStep

Tutorial outline

Using foamRun and fluid solver, simulate 10 s of flow over a forward step.

Objectives

• Understand blockMesh

• Define vertices via coordinates as well as surfaces and volumes via
vertices.

Data processing

Import your simulation into ParaView, and examine the mesh and the results in
detail.

OpenFOAM® Basic Training

Tutorial Two

1. Pre-processing

1.1. Copying tutorial

Copy the tutorial from the following folder to your working directory:

$FOAM_TUTORIALS/fluid/forwardStep

1.2. Case structure

1.2.1. 0 directory

There are two new files in the 0 folder, T and Ma. File T includes the initial
temperature values and Ma is the Mach number values which are calculated
using the OpenFOAM® function objects (this can be ignored for this tutorial).
Internal pressure and temperature fields are set to 1, and the initial velocity in
the domain as well as the inlet boundary is set to (3 0 0).

Note: As it can be seen, the p unit is the same as the pressure unit (kg m-1 s-2),
because fluid module is for compressible fluids.

Note: Do not forget that, this example is a purely numeric example (you might
have noticed this from the pressure values).

1.2.2. constant directory

By checking physicalProperties file, different properties of a compressible gas
can be set:

// *

* * * * * *//

thermoType

{

 type hePsiThermo;

 mixture pureMixture;

 transport const;

 thermo hConst;

 equationOfState perfectGas;

 specie specie;

 energy sensibleInternalEnergy;

}

// Note: these are the properties for a “normalized” inviscid gas

// for which the speed of sound is 1 m/s at a temperature of 1K

// and gamma = 7/5

mixture

{

 specie

 {

 molWeight 11640.3;

 }

 thermodynamics

 {

 Cp 2.5;

 Hf 0;

 }

 transport

 {

 mu 0;

 Pr 1;

 }

}

// *

* * * * * *//

OpenFOAM® Basic Training

Tutorial Two

In the thermoType, the models for calculating thermo physical properties of gas

are set:

- type: Specifies the underlying thermos-physical model, which in this

case is enthalpy based thermodynamics while incorporating the
equation of state using psi (compressibility)

- mixture: Is the model, which is used for the mixture, whether it is a

pure mixture, a homogeneous mixture, a reacting mixture or ….

- transport: Defines the transport model used. In this example a

constant value is used for viscosity.

- thermo: It defines the method for calculating heat capacities, e.g. in this

example constant heat capacities are used.

- equationOfState: Shows the relation which is used for the

compressibility of gases. Here ideal gas model is applied by selecting
perfectGas.

- energy: This key word lets the solver decide which type of energy

equation it should solve enthalpy or internal energy.

After defining the models for different thermos-physical properties of gas, the
constants and coefficients of each model are defined in the sub-dictionary
mixture. E.g. molWeight shows the molecular weight of gas, Cp stands for

heat capacity, Hf is the heat of fusion, mu is the dynamic viscosity and Pr shows

the Prandtl number.

By opening the momentumTransport the appropriate turbulent mode can be set
(in this case it is laminar):

simulationType laminar;

1.2.3. system directory

In this tutorial the mesh is not imported from other programs (e.g. GAMBIT®). It
will be created inside OpenFOAM®. For this purpose the blockMesh tool is
used. blockMesh reads the geometry and mesh properties from the
blockMeshDict file (found in the system directory):

>nano blockMeshDict

// *

* * * * * *//

convertToMeters 1;

vertices

(

 (0 0 -0.05)

 (0.6 0 -0.05)

 (0 0.2 -0.05)

 (0.6 0.2 -0.05)

 (3 0.2 -0.05)

 (0 1 -0.05)

 (0.6 1 -0.05)

 (3 1 -0.05)

 (0 0 0.05)

 (0.6 0 0.05)

 (0 0.2 0.05)

 (0.6 0.2 0.05)

 (3 0.2 0.05)

OpenFOAM® Basic Training

Tutorial Two

 (0 1 0.05)

 (0.6 1 0.05)

 (3 1 0.05)

);

blocks

(

 hex (0 1 3 2 8 9 11 10) (25 10 1) simpleGrading (1 1 1)

 hex (2 3 6 5 10 11 14 13) (25 40 1) simpleGrading (1 1 1)

 hex (3 4 7 6 11 12 15 14) (100 40 1) simpleGrading (1 1 1)

);

defaultPatch

{

 type empty;

}

boundary

(

 inlet

 {

 type patch;

 faces

 (

 (0 8 10 2)

 (2 10 13 5)

);

 }

 outlet

 {

 type patch;

 faces

 (

 (4 7 15 12)

);

 }

 bottom

 {

 type symmetryPlane;

 faces

 (

 (0 1 9 8)

);

 }

 top

 {

 type symmetryPlane;

 faces

 (

 (5 13 14 6)

 (6 14 15 7)

);

 }

 obstacle

 {

 type patch;

 faces

 (

 (1 3 11 9)

 (3 4 12 11)

);

 }

);

// *

* * * * * *//

As noted before units in OpenFOAM® are SI units. If the vertex coordinates
differ from SI, they can be converted with the convertToMeters command. The

number in the front of convertToMeters shows the constant, which should be

OpenFOAM® Basic Training

Tutorial Two

multiplied with the dimensions to change them to meter (SI unit of length). For
example:

convertToMeters 0.001;

shows that the dimensions are in millimeter, and by multiplying them by 0.001
they are converted into meters.

In the vertices part, the coordinates of the geometry vertices are defined, the

vertices are stored and numbered from zero, e.g. vertex (0 0 -0.05) is

numbered zero, and vertex (0.6 1 -0.05) points to number 6.

Note: In OpenFOAM® (and C++) counting starts from 0 and not 1!

In the block part, blocks are defined. The array of numbers in front each block

shows the block building vertices, e.g. the first block is made of vertices (0 1

3 2 8 9 11 10).

After each block, the mesh is defined in every direction. e.g. (25 10 1) shows

that this block is divided into:

- 25 parts in x direction

- 10 parts in y direction

- 1 part in z direction

As was explained in tutorial 1, even for 2D simulations the mesh and geometry
should be 3D, but with one cell in the direction, which is not going to be solved,
e.g. here number of cells in z direction is one and it’s because of that it’s a 2D
simulation in x-y plane.

The last part, simpleGrading(1 1 1) shows the size function, in this case 1

means there is no change in the cell size from one cell to another

In the boundary part, each boundary is defined by the vertices it is made of,

and its type and name are defined.

Note: For creating a face, the vertices should be chosen clockwise when
looking at the face from inside of the geometry.

2. Running simulation

Before running the simulation, the mesh has to be created. In the previous step,
the mesh and the geometry data were set. For creating it, the following
command should be executed from the case main directory (e.g. forwardStep):

>blockMesh

After that, the mesh is created in the constant/polyMesh folder. For running the
simulation, type the solver name form case directory and execute it:

>foamRun -solver fluid

Note: The solver can be also defined in the controlDict (which is the case here)
and then the simulation can be performed simply using foamRun command
without the solver flag.

OpenFOAM® Basic Training

Tutorial Two

3. Post-processing

The mesh is presented in the following way in ParaView, and you can easily
see the three blocks, which were created.

Mesh generated by blockMesh

Note: When a cut is created by default in ParaView, the program shows the
mesh on that plane as a triangular mesh even if it is a hex mesh. In fact,
ParaView changes the mesh to a triangular mesh for visualization, where every
square is represented by two triangles. For avoiding this when creating a cut in
ParaView in the Slice properties window, uncheck “Triangulate the Slice”.

The simulation results are as follows:

Time Pressure Velocity Temperature

0.5 s

1 s

10 s

Pressure, velocity and temperature contours at different time steps

Tutorial Three

Patching Fields

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Three

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Three

Background

1. Initial and Boundary Conditions

Before running a numerical simulation, it is crucial to correctly define initial and
boundary conditions for the problem. Poorly defined boundary conditions can
lead to non-convergence or incorrect results. Understanding and applying
these conditions properly ensures that the simulation behaves realistically and
produces accurate and reliable results.

Initial conditions define the starting state of the simulation. These values are
(usually) assigned to the center of every cell in the computational domain before
the solver begins calculations. As the simulation progresses, the solver updates
these values at each iteration based on the governing equations.

Key Points about Initial Conditions:

• Importance: They provide a reference point for the solver and influence
how quickly the solution converges.

• Transient problems: The solution evolves over time from the specified
initial state.

• Steady-state problems: The solver will iterate until a stable solution is
found, regardless of the initial values, but the initial value might affect the
speed of convergence and solution stability.

In OpenFOAM®, non-uniform initial conditions can be specified using the
setFields utility, which allows defining non-uniform distributions of properties in
the computational domain. This approach is especially useful when different
regions of the domain require different starting values.

Boundary conditions define how the simulation domain interacts with its
surroundings. They specify fixed values or behavior at the domain’s
boundaries, ensuring that the flow variables (such as velocity, pressure, or
temperature) remain well-defined at these locations and represent the real
physics at these boundaries. Types of Boundary Conditions:

• Dirichlet Boundary Conditions (Fixed Value): the variable (e.g.,
velocity or temperature) is assigned a fixed value at the boundary, e.g.
specifying a constant temperature at a heated wall.

• Neumann Boundary Conditions (Fixed Gradient): instead of a fixed
value, the gradient of the variable is specified at the boundary, e.g. a
heat flux condition at a surface where the temperature gradient is
controlled.

• Mixed Boundary Conditions: a combination of both Dirichlet and
Neumann conditions, often used for heat transfer and fluid dynamics
problems.

• Periodic Boundary Conditions: the solution at one boundary is linked
to the opposite boundary, creating a repeating or cyclic condition useful
for modeling infinite domains.

• Symmetry: used when a boundary behaves like a mirror, preventing
flow normal to it.

OpenFOAM® Basic Training

Tutorial Three

In OpenFOAM®, boundary and initial conditions are defined in configuration
files located in the 0 directory, where users can specify different types of
conditions depending on the physical problem being modeled.

Setting appropriate boundary and initial conditions ensures that the simulation
correctly represents the physical problem and achieves accurate, stable, and
realistic results.

2. Courant-Friedrichs-Lewy (CFL) Condition

When performing numerical simulations, stability is a key concern. The
Courant-Friedrichs-Lewy (CFL) condition is an essential mathematical criterion
that ensures numerical schemes remain stable and that information propagates
correctly within the computational domain.

Numerical solvers work by advancing the solution through a series of small time
steps. However, for the solution to be physically meaningful, the information
carried by waves or particles within the fluid must not move faster than the
numerical grid can capture it. If this condition is violated, the simulation may
become unstable, leading to numerical errors or divergence. To achieve this
CFL condition is used which is mathematically expressed as:

𝐶𝑜 =
𝑢∆𝑡

∆𝑥
≤ 1

Where:

• u = Velocity magnitude in the considered direction

• Δt = Simulation time step size

• Δx = Mesh cell size in the corresponding direction

How the CFL Condition Affects Simulations:

• Co > 1: The simulation becomes unstable because the numerical
scheme cannot properly capture the flow information moving between
cells.

• Co ≤ 1: The information is correctly captured within the computational
grid, ensuring stability and accuracy.

A finer mesh (smaller Δx) requires a smaller time step (Δt) to maintain stability,
while higher velocity (larger u) also requires a smaller Δt to satisfy the CFL
condition.

One of the most effective ways to determine a suitable Δt is to maintain the
Courant number close to 1 (to have the biggest stable time step), using the
maximum velocity in the domain and the smallest cell size. By using this
approach, the solver will run efficiently while maintaining stability.

OpenFOAM® Basic Training

Tutorial Three

fluid Solver – shockTube

Tutorial outline

Use the “fluid” solver; simulate 0.007 s of flow inside a shock tube, with a mesh
with 100, 1000 and 10000 cells in one dimension, for initial values 1 bar/0.1 bar
and 10 bar/0.1 bar.

Objectives

• To understand the setFields utility

• Learn how to specify initial and boundary conditions

• Investigate effect of grid resolution.

Data processing

Import your simulation into ParaView, and compare results.

OpenFOAM® Basic Training

Tutorial Three

1. Pre-processing

1.1. Copying tutorial

Copy the tutorial from the following directory to your working directory

$FOAM_TUTORIALS/fluid/shockTube

1.2. Mesh and setting fields

Looking at the blockMeshDict file (in system directory), it is obvious that it is a
1D mesh, because of the number of mesh cells in y and z directions is one, and
also in boundary section, plates vertical to these directions are defined as

empty. The mesh density can be set in the blocks part by changing x direction

mesh size (e.g. change it from 1000 to 100 or 10000).

Another important file is setFieldsDict (in the system directory), which is used
by the tool setFields for patching (assigning an amount to a region) in the

simulation. For example, here a pressure of 105 Pa is set as the default value
for the entire region (in the defaultFieldValues), then half of the region (from

0 to 5) is patched with a pressure of 104 Pa.

// *

* * * * * *//

defaultFieldValues (volVectorFieldValue U (0 0 0) volScalarFieldValue T

348.432 volScalarFieldValue p 100000);

regions (boxToCell { box (0 -1 -1) (5 1 1) ; fieldValues (

volScalarFieldValue T 278.746 volScalarFieldValue p 10000) ; });

// *

* * * * * *//

In the defaultFieldValues, a value is assigned to the whole domain, for

example here, the velocity has been set everywhere to zero, the temperature
to 348.432 K, and the pressure to 100000 Pa. In the regions, a specific value

is patched to a certain region of the domain. In this example the region is
defined as a cube, by the coordinates of one of its diagonals in boxToCell.

After choosing the region, the new values are assigned to the parameters (e.g.
temperature at 278.746 K and pressure at 10000 Pa).

2. Running simulation

First the mesh needs to be created:

>blockMesh

In order to assign the values which were set in the setFieldDict:

>setFields

Then run:

>foamRun -solver fluid

OpenFOAM® Basic Training

Tutorial Three

Note: Checking the information printed to the terminal (or log file) you can see
how by decreasing the cell size (e.g. by increasing the number of cells) or by
increasing the velocity (changing the pressure values) the Co number is
increasing at a constant time step. In case the Co is getting bigger than one,
the deltaT needs to be adopted accordingly to keep the Co below one.

Note: After running setFields for the first time, the files in the 0 directory are
overwritten. If the mesh is changed these files are not compatible with the new
mesh and the simulation will fail. To solve this problem replace the files in the
0 directory with the files in the 0.orig or the files with suffix “.orig”, e.g. p.orig in
the 0 directory. In the OpenFOAM® files or directories with suffix “.orig”
(“original”) usually contain the backup files. If a command changes the original
files these files can be replaced.

3. Post-processing

The simulation results are as follows:

OpenFOAM® Basic Training

Tutorial Three

Velocities for different configurations along tube at t = 0.007 s

Velocity along tube axis for 10 bar/0.1bar and 10000 cells case at t = 0.007s

OpenFOAM® Basic Training

Tutorial Three

Pressures for different configurations along tube at t = 0.007 s

Pressure along tube axis for 10 bar/0.1bar and 10000 cells case at
t = 0.007s

OpenFOAM® Basic Training

Tutorial Three

Temperature for different configurations along tube at t = 0.007 s

Temperature along tube axis for 10 bar/0.1bar and 10000 cells case at
t = 0.007 s

Tutorial Four

Discretization – Part 1

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Four

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Four

Background

1. Discretizing general transport equation terms

Understanding the process of discretization is essential in Computational Fluid
Dynamics (CFD). Discretization involves breaking down continuous differential
equations into algebraic equations that can be solved numerically. In
OpenFOAM®, various discretization schemes are used to approximate different
terms in the transport equation, which describes how physical quantities (e.g.,
velocity, temperature, or concentration) change over space and time. Below is
a detailed explanation of how each term in the transport equation is discretized.

1.1. Time derivative

The time derivative term represents how a variable evolves over time. This term
is crucial for transient simulations, where the solution changes over time.

Discretization of the time derivative such as
𝜕𝜌𝜑

𝜕𝑡
 of the transport equation is

performed by integrating it over the control volume of a grid cell. Here, the Euler
implicit time differencing scheme is explained. It is unconditionally stable, but
only first order accurate in time. Assuming linear variation of φ within a time
step gives:

 ∫
𝜕𝜌𝜑

𝜕𝑡
𝑑𝑉

𝑉

≈
𝜌𝑃

𝑛𝜑𝑃
𝑛 − 𝜌𝑃

0𝜑𝑃
0

∆𝑡
𝑉𝑃

Where 𝜑𝑛 ≡ 𝜑 (𝑡 + ∆𝑡) stands for the new value at the time step we are solving

for and 𝜑0 ≡ 𝜑(𝑡) denotes old values from the previous time step.

Higher-order schemes, such as Crank-Nicolson, offer improved accuracy but
may introduce oscillations if not applied carefully.

1.2. Convection term

The convection term describes the transport of a property due to the motion of
the fluid. Convection plays a significant role in CFD since it governs how
momentum, heat, and mass are transported within the fluid domain.

Discretization of convection terms is performed by integrating over a control
volume and transforming the volume integral into a surface integral using the
Gauss's theorem as follows:

∫ 𝒏 ∙ (𝜌𝜑𝒖)
𝐴

𝑑𝐴 ≈ ∑ 𝒏 ∙ (𝐴𝜌𝒖)𝑓𝜑𝑓 =

𝑓

∑ 𝐹𝜑𝑓

𝑓

Where F is the mass flux through the face 𝑓 defined as 𝐹 = 𝒏 ∙ (𝐴𝜌𝒖)𝑓. The

value 𝜑𝑓 on face f can be evaluated in a variety of ways, which will be covered

later in section 2. The subscript 𝑓 refers to a given face.

Choosing the right numerical scheme is essential for balancing accuracy and
stability in convection-dominated problems.

OpenFOAM® Basic Training

Tutorial Four

1.3. Diffusion term

The diffusion term represents the spread of the property due to molecular
effects such as viscosity or heat conduction. The diffusion term is a second-
order derivative term that requires careful discretization. Discretization of
diffusion terms is done in a similar way to the convection terms. After integration
over the control volume, the term is converted into a surface integral:

∫ 𝒏 ∙ (𝛤𝛻𝜑)
𝐴

𝑑𝐴 = ∑ 𝛤𝑓(𝒏 ∙ 𝛻𝑓𝜑)𝐴𝑓

𝑓

Note that the above approximation is only valid if Γ is a scalar. Here, ∇𝑓𝜑

denotes the gradient at the face 𝐴 denotes the surface area of the control
volume and 𝐴𝑓 denotes the area of a face for the control volume. However, it

does not imply a specific discretization technique. The face normal gradient can
be approximated using the scheme:

𝒏 ∙ 𝛻𝑓𝜑 =
𝜑𝑁 − 𝜑𝑃

|𝒅|

This approximation is second order accurate when the vector 𝒅 between the
center of the cell of interest P and the center of a neighboring cell N is
orthogonal to the face plane, i.e. parallel to A. In the case of non-orthogonal
meshes, a correction term could be introduced which is evaluated by
interpolating cell centered gradients obtained from Gauss integration.

1.4. Source term

Source terms, such as 𝑆𝜑of the transport equation, can be a general function

of φ. Before discretization, the term is linearized:

𝑆𝜑 = 𝜑𝑆𝐼 + 𝑆𝐸

where 𝑆𝐸 and 𝑆𝐼 may depend on φ. The term is then integrated over a control
volume as follows:

∫ 𝑆𝜑𝑑𝑉
𝑉

= 𝑆𝐼𝑉𝑃𝜑𝑃 + 𝑆𝐸𝑉𝑃

There is some freedom on exactly how a particular source term is linearized.
When deciding on the form of discretization (e.g. linear, upwind), its interaction
with other terms in the equation and its influence on boundedness and accuracy
should be examined.

2. Discretization Schemes

Discretization schemes determine how values are interpolated between cell
centers and faces to compute fluxes accurately. The choice of scheme affects
solution accuracy, numerical diffusion, and computational stability. Below are
commonly used schemes and their respective advantages and limitations.

In general, interpolation needs a flux F through a general face f, and in some
cases, one or more parameters 𝛾. The face value 𝜑𝑓 can be evaluated from the

OpenFOAM® Basic Training

Tutorial Four

values in the neighboring cells using a variety of schemes. The flux satisfies
continuity constraints, which is prerequisite to obtaining the results.

2.1. First Order Upwind Scheme

In first order upwind scheme we define φ as follows:

Note: Here we define two faces, 𝑒 and 𝑤. To obtain flux through faces e and w,

we need to look its neighbouring values at P/E and W/P respectively. The
subscripts denote the face at which the face value 𝜑 or the flux F is located at.

 𝜑𝑒 = 𝜑𝑃 𝑖𝑓, 𝐹𝑒 > 0
 𝜑𝑒 = 𝜑𝐸 𝑖𝑓, 𝐹𝑒 < 0

First Order Upwind Scheme

𝜑𝑤 is also defined similarly (Positive direction is from W to E).

2.2. Central Differencing Scheme

Here, we use linear interpolation for computing the cell face values.

𝜑𝑒 =
𝜑𝐸 + 𝜑𝑃

2
, 𝜑𝑤 =

𝜑𝑃 + 𝜑𝑊

2

Central Differencing Scheme

2.3. QUICK

QUICK stands for Quadratic Upwind Interpolation for Convective Kinetics. In
the QUICK scheme 3 point upstream-weighted quadratic interpolation are used
for cell face values.

𝑊ℎ𝑒𝑛 𝐹𝑒 > 0, 𝜑𝑒 =
6

8
𝜑𝑃 +

3

8
𝜑𝐸 −

1

8
𝜑𝑊

OpenFOAM® Basic Training

Tutorial Four

𝑊ℎ𝑒𝑛 𝐹𝑤 > 0, 𝜑𝑤 =
6

8
𝜑𝑊 +

3

8
𝜑𝑃 −

1

8
𝜑𝑊𝑊

QUICK scheme

Similar expressions can be obtained for 𝐹𝑒 < 0 and 𝐹𝑤 < 0.

Now that you know a bit more about discretization schemes, we can move on
to the tutorial. In this tutorial, the scalarTransportFoam solver is used. More
explanation of this solver can be found below.

3. functions solver

Among foamRun solver modules functions solver, which is specifically
designed to execute function objects as defined in the system/controlDict or
system/functions files. Function objects are utilities within OpenFOAM that
facilitate workflow configurations and enhance simulations by generating
additional data during runtime or post-processing. By utilizing the functions
solver module with foamRun, users can automate the execution of these
function objects, streamlining processes such as data logging, field
calculations, and custom analyses without the need to run a full simulation. This
approach optimizes computational resources and simplifies the integration of
auxiliary calculations into the simulation workflow.

One of these functions is scalarTransport which resolves a transport equation
for a passive scalar. The velocity field and boundary condition need to be
provided by the user. It works by setting the source term in the transport
equation to zero (see equation below), and then solving the equation.

𝜕(𝜌𝜑)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝜑𝒖) − 𝛻 ∙ (𝛤𝛻𝜑) = 0

OpenFOAM® Basic Training

Tutorial Four

functions Solver – shockTube

Tutorial outline

Use the functions solver, simulate 5 s of flow inside a shock tube, with 1D mesh
of 1000 cells (10 m long geometry from -5 m to 5 m). Patch with a scalar of 1
from -0.5 to 0.5. Simulate following cases:

• Set U to uniform (0 0 0). Vary diffusion coefficient (low, medium and high
value).

• Set the diffusion coefficient to zero and also U to (1 0 0) and run the
simulation in the case of pure advection using following discretization
schemes:

- upwind

- linear

- linearUpwind

- QUICK

- cubic

Objectives

• Understanding different discretization schemes.

Data processing

Import your simulation into ParaView, and plot temperature along tube length.

OpenFOAM® Basic Training

Tutorial Four

1. Pre-processing

1.1. Compile tutorial

Create a folder in your working directory:

>mkdir shockTube

Copy the following case to the created directory:

$FOAM_TUTORIALS/fluid/shockTube

In the 0 directory, create a copy of T.orig and U.orig and rename them to T and
U respectively. In the constant directory delete physicalProperties file, and in
the system directory delete all the files except for blockMeshDict and
setFieldsDict files.

From the following case:

$FOAM_TUTORIALS/incompressibleFluid/pitzDailyScalarTransp

ort

Copy physicalProperties file to the constant folder in the newly created case
constant folder. Copy controlDict, fvSchemes, fvSolution and functions files
from the above case system directory to the created case system directory.

1.2. system directory

Edit the setFieldsDict, to patch the T field to 1.0 between -0.5 m and 0.5 m and
to set the U to (0 0 0) for the whole domain. For setting U in the whole domain
to (1 0 0), just change (0 0 0) to (1 0 0):

// *

* * * * * *//

defaultFieldValues

(

volVectorFieldValue U (0 0 0)

volScalarFieldValue T 0.0

);

regions

(

boxToCell

{

box (-0.5 -1 -1) (0.5 1 1);

fieldValues

(

volScalarFieldValue T 1.0

);

}

);

// *

* * * * * *//

In the controlDict, update the endTime to 5 for 5s of simulation. As it was

mentioned before, the discretization scheme for each operator of the governing
equations can be set in fvSchemes.

OpenFOAM® Basic Training

Tutorial Four

// *

* * * * * *//

ddtSchemes

{

 default Euler;

}

gradSchemes

{

 default Gauss linear;

}

divSchemes

{

 default none;

 div(phi,T) Gauss linearUpwind grad(T);

}

laplacianSchemes

{

 default none;

 laplacian(DT,T) Gauss linear corrected;

}

interpolationSchemes

{

 default linear;

}

snGradSchemes

{

 default corrected;

}

// *

* * * * * *//

For each type of operation a default scheme can be set (e.g. for divSchemes

is set to none, it means no default scheme is set). Also a special type of

discretization for each element can be assigned (e.g. div(phi,T) it is set to

linearUpwind). For each element, where a discretization method has not been

set, the default method will be applied. If the default setting is none, no scheme

is set for that element and the simulation will crash.

Note: In fvSchemes, the schemes for the time term of the general transport
equation are set in ddtSchemes sub-dictionary. divSchemes are responsible for

the advection term schemes and laplacianSchemes set the diffusion term

schemes.

Note: divSchemes should be applied like this: Gauss + scheme. The Gauss

keyword specifies the standard finite volume discretization of Gaussian
integration which requires the interpolation of values from cell centers to face
centers. Therefore, the Gauss entry must be followed by the choice of

interpolation scheme (www.openfoam.org).

In the fvSolution file add pressure reference cell number and value to the
PIMPLE sub-dictionary, it should look like the following:

PIMPLE

{

 nNonOrthogonalCorrectors 0;

 pRefCell 0;

 pRefValue 0;

}

OpenFOAM® Basic Training

Tutorial Four

Note: pRefCell and pRefValue are dummy values that solver can start the
calculations, since there is no pressure field available.

In the functions file, just keep the line for activating the scalar transport function.
In the functions file, different functions can be called, in this case the scalar
transport function is called with using “T” as the property (scalar) to be solved,
it uses a constant diffusivity model and set the value of it by setting D (in this
case it is 0.01).

// * //

#includeFunc scalarTransport(T, diffusivity=constant, D = 0.01)

// * //

Note: By setting the diffusion coefficient “D” to zero, the case will be switched
to a pure advection simulation with no diffusion.

For part two:

• Set the diffusivity to 0, by setting the D in the functions file

• Set the velocity field to (1 0 0), either by using setFields utility or simply
in the 0/U file change the internalField to (1 0 0)

• Set different schemes in the fvSchemes file, for the div(phi, T)

2. Running simulation

>blockMesh

>setFields

>foamRun -solver functions

3. Post-processing

The simulation results are as follows.

A. Case with zero velocity (pure diffusion):

Pure diffusion with low diffusivity (0.00001) at t = 5 s

OpenFOAM® Basic Training

Tutorial Four

Pure diffusion with medium diffusivity (0.01) at t = 5 s

Pure diffusion with high diffusivity (1) at t = 5 s

B. Case with pure advection (diffusion coefficient = 0):

Scalar T along tube at t = 4 s

OpenFOAM® Basic Training

Tutorial Four

The cubic scheme predicted an unexpected rise in temperature between
around 0 to 1 m, which differs hugely from the other schemes. This can be
explained by looking at the numerical behavior of the cubic scheme. It is
operated in fourth order accuracy with unbounded solutions, which caused
another false root solution to be found. Therefore, higher order accuracy does
not always generate better results!

Tutorial Five

Discretization – part 2

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Five

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Five

Background

1. Properties of discretization schemes

When performing numerical simulations, it is crucial to choose the right
discretization scheme to ensure physically realistic results. The effectiveness
of a discretization scheme depends on several key properties, including
conservativeness, boundedness, and transportiveness. Understanding these
properties helps in selecting the appropriate scheme for a given problem in
Computational Fluid Dynamics (CFD). These properties also influence the
numerical accuracy, stability, and efficiency of the simulation.

1.1. Conservativeness

A discretization scheme is conservative if it ensures that the total amount of a
transported quantity (e.g., mass, momentum, energy) is preserved within the
solution domain. This property is fundamental for obtaining physically
meaningful results in fluid dynamics and preventing artificial gain or loss of the
transported variable.

To achieve conservativeness, the flux balance across each control volume
must be maintained. Mathematically, this means:

• The flux of φ leaving a control volume across a certain face must equal
the flux entering the adjacent control volume through the same face.

• The discretization scheme should represent the flux through a common
face consistently across adjacent control volumes.

A scheme that violates conservativeness can lead to unphysical results, such
as artificial creation or loss of mass or energy. Finite volume methods naturally
ensure conservation by integrating the governing equations over control
volumes, ensuring that what exits one control volume enters the next.

1.2. Boundedness

Most numerical solvers use iterative techniques to obtain the solution at each
node. The solver starts with an initial guess and updates the values until
convergence is achieved. To ensure a stable and physically meaningful
solution, the discretization scheme must satisfy boundedness criteria.

A bounded solution means that the numerical values of φ remain within
reasonable limits, avoiding unrealistic oscillations or negative concentrations,
which would be non-physical.

The sufficient condition for condition for boundedness is:

∑|𝑎𝑛𝑏|

|𝑎᾿𝑃|
 {

≤ 1 𝑎𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠
< 1 𝑎𝑡 𝑜𝑛𝑒 𝑛𝑜𝑑𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡

Here 𝑎᾿𝑃 is the net coefficient of the central node P (i.e. 𝑎᾿𝑃 − 𝑆𝑃), 𝑎𝑛𝑏 are the
coefficient of the neighbouring nodes. If the condition is satisfied, the resulting
matrix of coefficients is diagonally dominant. We need the net coefficients to be

OpenFOAM® Basic Training

Tutorial Five

as large as possible; this means that 𝑆𝑃 should be always negative. If this is the

case, 𝑆𝑃 becomes positive due to the modulus sign and adds to 𝑎𝑃.

1.3. Transportiveness

Transportiveness refers to the ability of a discretization scheme to correctly
account for the dominant transport mechanism in a problem. This is assessed
using the Peclet number (Pe), which measures the relative strength of
convection versus diffusion:

𝑃𝑒 =
𝑁𝑐𝑜𝑛𝑣

𝑁𝑑𝑖𝑓𝑓

=
𝐿𝑈

𝐷

Note: L is a characteristic length scale, U is the velocity magnitude, D is a
characteristic diffusion coefficient.

The primary goal is to ensure that the transportiveness is borne out of the
discretization scheme.

Let us consider the effect at a point P due to two constant sources of φ at nearby
points W and E on either side, in three cases.

1. When Pe = 0 (pure diffusion), the contours of φ are circles, as φ is spread
out evenly in all directions

2. As Pe increases, the contours become elliptical, as the values of φ are
influenced by convection

3. When Pe→∞, the countours become straight lines, since φ are stretched
out completely and affected only by upstream conditions

4. Transportiveness property

2. Assessing the general discretization schemes

It is useful to compare the different types of general discretization schemes
covered in Tutorial Four based on their conservativeness, boundedness and
transportiveness properties.

OpenFOAM® Basic Training

Tutorial Five

Different discretizing schemes assessment

Scheme
Conser-
vative

Bounded Accuracy
Trans-
portive

Remarks

Upwind

Yes

Unconditionally
bounded

First order Yes

Include false diffusion if
the velocity vector is not

parallel to one of the
coordinate directions

Central
Differencing

Yes
Conditionally

bounded*
Second order No

Unrealistic solutions at
large Pe number

QUICK Yes
Unconditionally

bounded
Third order Yes

Less computationally
stable. Can give small

undershoots and
overshoots

⃰ Pe should be less than 2.

3. Numerical (false) diffusion

Numerical diffusion is an artificial diffusion effect that occurs when the flow
direction is not aligned with the computational grid. It is a numerical artifact that
introduces additional diffusion into the system and primarily affects convection-
dominated flows with high Peclet numbers (Pe).

False diffusion is more prominent when using first-order upwind schemes. It
decreases with finer grids, but using higher-order schemes (e.g., QUICK) is a
more effective way to reduce it. False diffusion can distort flow structures,
leading to non-physical results, especially in high-speed flows. Using a high-
resolution grid or aligning the mesh with the flow direction can help mitigate
numerical diffusion.

 First-order upwind
Second-order

upwind

8 × 8

64 × 64

Numerical diffusion

OpenFOAM® Basic Training

Tutorial Five

4. Numerical behavior of OpenFOAM® discretization schemes

The choice of discretization scheme for this tutorial should depend critically on
the numerical behavior of the scheme. Using higher order schemes, numerical
diffusion errors can be reduced, however it requires higher computational
efforts.

Scheme Numerical behavior

upwind First order, bounded

linear Second order, unbounded

linearUpwind First/second order, bounded

QUICK Second order or higher, bounded

cubic Fourth order, unbounded

OpenFOAM® Basic Training

Tutorial Five

functions Solver – circle

Tutorial outline

Use the functions solver, do simulate the movement of a circular scalar spot
region (radius = 1 m) at the middle of a 100 × 100 cell mesh (10 m × 10 m),
then move it to the right (3 m), to the top (3 m) and diagonally.

Schematic sketch of the problem

Objectives

• Choosing the best discretization scheme.

Data processing

Examine your simulation in ParaView.

OpenFOAM® Basic Training

Tutorial Five

1. Pre-processing

1.1. Compile tutorial

Create the new case in your working directory like in tutorial four.

1.2. 0 directory

To move the circle to right change the internalField to (1 0 0) in the U file

for setting the velocity field towards the right.

1.3. system directory

Modify the blockMeshDict for creating a 2D geometry with 100 × 100 cells
mesh.

// *

* * * * * *//

convertToMeters 1;

vertices

(

 (-5 -5 -0.01)

 (5 -5 -0.01)

 (5 5 -0.01)

 (-5 5 -0.01)

 (-5 -5 0.01)

 (5 -5 0.01)

 (5 5 0.01)

 (-5 5 0.01)

);

blocks

(

 hex (0 1 2 3 4 5 6 7) (100 100 1) simpleGrading (1 1 1)

);

edges

(

);

boundary

(

 sides

 {

 type patch;

 faces

 (

 (1 2 6 5)

 (0 4 7 3)

 (3 7 6 2)

 (0 1 5 4)

);

 }

 empty

 {

 type empty;

 faces

 (

 (5 6 7 4)

 (0 3 2 1)

);

 }

);

// *

* * * * * *//

OpenFOAM® Basic Training

Tutorial Five

Choose a discretization scheme based on the results from the previous
example and set it in the fvSchemes.

In the setFieldsDict patch a circle to the middle of the geometry using the
following lines.

// *

* * * * * *//

defaultFieldValues (volScalarFieldValue T 0);

regions

(

cylinderToCell

{

 p1 (0 0 -1);

p2 (0 0 1);

 radius 0.5;

 fieldValues

(

volScalarFieldValue T 1

) ;

}

);

// *

* * * * * *//

cylinderToCell command is used to patch a cylinder to the region, p1 and p2

show the two ends of cylinder center line, in the radius the radius is set.

Check controlDict, in the first part of simulation, where the circle should move
to the right set the startFrom to startTime and startTime to 0. By a simple

calculation, it can be seen that the endTime should be 3s (to move the circle

from center to the right side). Similar calculations need to be done for the two
other parts, except the startTime is set to the endTime of previous part, and

new endTime should be that part “simulation time” plus endTime of the previous

part.

Note: In the functions file set D to zero (no diffusion!).

2. Running Simulation

>blockMesh

>setFields

>foamRun -solver functions

For running further parts (moving the circle to top, and then diagonally), in the
0 folder in the U file change the internalFiled velocity to (0 1 0) so the circle

moves up, and to (-1 -1 0) to move the circle diagonally back to the original
position.

Note: In the controdDict file, subSolverTime is set to 0 and therefore even if the
startTime is set to latestTime, the simulation will read the U file from time 0!

3. Post-processing

The simulation results are as follows:

OpenFOAM® Basic Training

Tutorial Five

1 s 2 s 3 s

4 s 5 s 6 s

7 s 8 s 9 s

Position of the circle at different time steps

Tutorial Six

Turbulence – Steady State

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Six

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Six

Background

1. Why turbulence modeling?

Many real-world engineering applications involve turbulent flow, which is a
highly unsteady and chaotic phenomenon characterized by a wide range of
swirling motions, called eddies, that exist at different scales. Accurately solving
turbulent flows requires resolving all these eddies, which would demand an
enormous amount of computational power and memory. In practical
applications, such a Direct Numerical Simulation (DNS) is infeasible due to its
excessive computational cost.

To overcome this challenge, turbulence models are used to approximate the
effects of turbulent eddies without resolving them explicitly. These models
simplify the governing equations of fluid flow while still capturing the essential
characteristics of turbulence.

An important principle in turbulence modeling is averaging, which simplifies the
governing equations of turbulent motion. Due to computational limitations, it is
not always possible to model turbulent flow at fine spatial and temporal
resolutions. Turbulence models compensate for this limitation by representing
the unresolved scales of motion.

There are different types of turbulence models:

• RANS-based models:

o Linear eddy-viscosity models

▪ Algebraic models

▪ One and two equation models

o Non-linear eddy viscosity models and algebraic stress models

o Reynolds stress transport models

• Large eddy simulations

• Detached eddy simulations and other hybrid models

In this tutorial, RANS-based model is explained in detail. In the next tutorial,
large eddy simulations (LES) and Smagorinsky-Lilly model will be covered.

2. RANS-based models

The governing equations for a Newtonian fluid are:

• Conservation of mass

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌�̃�) = 0

• Conservation of momentum (Navier-Stokes equation)

𝜕(𝜌�̃�𝑖)

𝜕𝑡
+ ∇ ∙ (𝜌�̃�𝑖�̃�) = −

𝜕𝑝

𝜕𝑥𝑖

+ ∇ ∙ (𝜇∇�̃�𝑖) + �̃�𝑀𝑖

OpenFOAM® Basic Training

Tutorial Six

• Conservation of passive scalars (given a scalar �̃�)

𝜕(𝜌�̃�)

𝜕𝑡
+ ∇ ∙ (𝜌�̃��̃�) = ∇ ∙ (𝑘∇�̃�) + �̃�𝑒

Note: suffix notation is used in the conservation of momentum equation for
simplicity, with 𝑖 = 1 corresponding to the x-direction, 𝑖 = 2 the y-direction and
𝑖 = 3 the z-direction.

One of the solutions to the problem is to reduce the number of scales (from
infinity to 1 or 2) by using the Reynolds decomposition. Any property (whether
a vector or a scalar) can be written as the sum of an average and a fluctuation,
i.e. �̃� = Φ + φ where the capital letter denotes the average and the lower case
letter denotes the fluctuation of the property. Using the Reynolds decomposition
in the Navier-Stokes equations, we obtain RANS or Reynolds Averaged Navier
Stokes Equations.

• Average conservation of mass

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝐔) = 0

• Average conservation of momentum

𝜕(𝜌U𝑖)

𝜕𝑡
+ ∇ ∙ (𝜌U𝑖𝐔) = −

𝜕𝑃

𝜕𝑥𝑖

+ ∇ ∙ (𝜇U𝑖) − (
𝜕(𝜌𝑢𝑢𝑖̅̅ ̅̅̅)

𝜕𝑥
+

𝜕(𝜌𝑣𝑢𝑖̅̅ ̅̅̅)

𝜕𝑦
+

𝜕(𝜌𝑤𝑢𝑖̅̅ ̅̅ ̅)

𝜕𝑧
) + S𝑀𝑖

• Average conservation of passive scalars (given a scalar �̃�)

𝜕(𝜌E)

𝜕𝑡
+ ∇ ∙ (𝜌EU) = ∇ ∙ (𝑘∇T) − (

𝜕(𝜌𝑢𝑒̅̅ ̅)

𝜕𝑥
+

𝜕(𝜌𝑣𝑒̅̅ ̅)

𝜕𝑦
+

𝜕(𝜌𝑤𝑒̅̅ ̅̅)

𝜕𝑧
) + S𝑒

Note: a special property of the Reynolds decomposition is that the average of
the fluctuating component is identically zero, a fact that is used in the derivation
of the above equations.

However, by using the Reynolds decomposition, there are new unknowns that
were introduced such as the turbulent stresses (𝜌𝑢𝑢̅̅̅̅ , 𝜌𝑣𝑢̅̅̅̅ , 𝜌𝑤𝑢̅̅ ̅̅ , 𝜌𝑢𝑣̅̅̅̅ , 𝜌𝑣𝑣̅̅ ̅, 𝜌𝑤𝑣̅̅ ̅̅ ,

𝜌𝑢𝑤̅̅ ̅̅ , 𝜌𝑣𝑤̅̅ ̅̅ , 𝜌𝑤𝑤̅̅̅̅̅) and turbulent fluxes (𝜌𝑢𝑒̅̅ ̅, 𝜌𝑣𝑒̅̅ ̅, 𝜌𝑤𝑒̅̅ ̅̅) and therefore, the RANS
equations describe an open set of equations (where the over bar denotes an
average). The need for additional equations to model the new unknowns is
called Turbulence Modeling.

We now have 9 additional unknowns (6 Reynolds stresses and 3 turbulent
fluxes). In total, for the simplest turbulent flow (including the transport of a scalar
passive scalar, e.g. temperature when heat transfer is involved) there are 14
unknowns (include u, v, w, p, T)!

One possible approach to model the additional unknowns is to use the PDEs
for the turbulent stresses and fluxes as a guide to modeling. The turbulent
models are as follows, in order of increasing complexity:

• Algebraic (zero equation) models: mixing length (first order model)

• One equation models: k‐model, μt‐model (first order model)

• Two equation models: k‐ε, k‐kl, k‐ω, low Re k‐ε (first order model)

• Algebraic stress models: ASM (second order model)

OpenFOAM® Basic Training

Tutorial Six

• Reynolds stress models: RSM (second order model)

• Zero‐Equation Models

In OpenFOAM®, there are two simulation types for turbulence flow, RAS and
LES. As the name suggest, the RAS simulation is based on the RANS-based
models covered above and will be the sole focus of this tutorial. In the next
tutorial, we will move on to LES modeling and compare the results generated
from these two modeling types.

OpenFOAM® Basic Training

Tutorial Six

incompressibleFluid – pitzDaily

Tutorial outline

Use incompressibleFluid solver, run a steady state simulation with following
turbulence models:

• kEpsilon (RAS)

• kOmega (RAS)

Objectives

• Understanding turbulence modeling

• Understanding steady state simulation

Data processing

Show the results of U and the turbulent viscosity in two separate contour plots.

OpenFOAM® Basic Training

Tutorial Six

1. Pre-processing

1.1. Copying tutorial

Copy the following tutorial to your working directory:

$FOAM_TUTORIALS/incompressibleFluid/pitzDaily

Replace the system directory with the system directory from the following
tutorial:

$FOAM_TUTORIALS/incompressibleFluid/pitzDailySteadyExperi

mentalInlet

Copy the pitzDaily file for the pitzDaily geometry from following directory to your
system directory:

$FOAM_TUTORIALS/resources/blockMesh

1.2. 0 directory

When a turbulent model is chosen, the value of its constants and its boundary
values should be set in the appropriate files. For example in kEpsilon model the
k and epsilon files should be edited. See below for the epsilon file (in the 0
folder):

// *

* * * * * *//

dimensions [0 2 -3 0 0 0 0];

internalField uniform 14.855;

boundaryField

{

 inlet

 {

 type fixedValue;

 value uniform 14.855;

 }

 outlet

 {

 type zeroGradient;

 }

 upperWall

 {

 type epsilonWallFunction;

 value uniform 14.855;

 }

 lowerWall

 {

 type epsilonWallFunction;

 value uniform 14.855;

 }

 frontAndBack

 {

 type empty;

 }

}

// *

* * * * * *//

OpenFOAM® Basic Training

Tutorial Six

Note: Here is a list of files, which should be available at 0 directory and need to
be modified for each turbulence model:

• laminar: no file

• kEpsilon (RAS): k and epsilon

• kOmega (RAS): k and omega

• LRR (RAS): k, epsilon and R

• Smagorinsky (LES): s

• kEqn (LES): k and s

• SpalartAllmaras (LES): nuSgs and nuTilda

Some files are available, e.g. epsilon, k and nuTilda, some files should be
created by the user, e.g. R, nuSgs. Templates for these files can be also found
in the examples of older versions of OpenFOAM®, e.g. 1.7.1.

1.3. constant directory

In the momentumTransport file, the simulationType can be set as either RAS,

LES or laminar. Then the corresponding sub-dictionary of the chosen

simulation type needs to be defined. In this case, the sub-dictionary for RAS
contains information about the chosen RAS model (kEpsilon), and the status of
turbulence and printCoeffs are turned to on. Setting the turbulence to

off/false will turn the turbulence model off and perform a laminar simulation.

// *

* * * * * *//

simulationType RAS;

RAS

{

 model kEpsilon;

 turbulence on;

 printCoeffs on;

}

// *

* * * * * *//

Note: For Boolean inputs in OpenFOAM either on/off, 1/0 or true/false can be
used.

1.4. system directory

Running simulations in steady state mode, the endTime in the controlDict file

corresponds to maximum number of iterations (e.g. 1000) instead of time,
deltaT is the iterator and should be 1, because it is the amount of increase in

the iteration number and writeInterval will show the frequency of saving

data (e.g. 50 means each 50 iterations a saving will be done).

OpenFOAM® Basic Training

Tutorial Six

In the fvSchemes files the ddtSchemes is set to steadyState which will set the

time derivative part of conservation equations to zero which is compatible with
the steady state assumption.

// *

* * * * * *//

ddtSchemes

{

 default steadyState;

}

gradSchemes

{

 default Gauss linear;

}

divSchemes

{

 default none;

 div(phi,U) bounded Gauss Upwind;

 div(phi,k) bounded Gauss Upwind;

 div(phi,epsilon) bounded Gauss Upwind;

 div(phi,R) bounded Gauss Upwind;

 div(R) Gauss linear;

 div(phi,nuTilda) bounded Gauss Upwind;

 div((nuEff*dev2(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

 default Gauss linear corrected;

}

interpolationSchemes

{

 default linear;

}

snGradSchemes

{

 default corrected;

}

// *

* * * * * *//

In case we are solving for property such as omega and it is not defined in the
schemes and there is no default schemes defined, it should be add to the
relevant schemes section, e.g. to the divSchemes (div(phi,omega)). Also,
fvSolution needs to be adopted based on the new parameters, e.g. omega.

Note: In the fvSolution the solver type and settings need to be defined or be
added to the others, e.g. for omega “(U|k|epsilon|R|nuTilda|omega)”).

2. Running simulation

>blockMesh -dict system/pitzDaily

Note: The default dictionary file for blockMesh is blockMeshDict in the system
directory. It is possible to use a different dictionary file by using the flag “-dict”
and the address of the file (dictionary), in this case system/pitzDaily.

>foamRun -solver incompressibleFluid

OpenFOAM® Basic Training

Tutorial Six

Note: When the solution converges, “SIMPLE solution converged in …

iterations” message will be displayed in the Shell window. If nothing happens

and you do not see a message after a while (this is not the case in here, it
converges after a short time), then you should check the residuals which are
displayed in the Shell window manually (you should check initial residual

values, it shows the difference between this iteration and the last one), if all of
the Initial residual (see below) values are close to amounts you have set

in the fvSolution then you can stop simulation (ctrl+c).

Note: You can use bash script and gnuPlot for extracting the residual data from
log files and plotting them. For saving the simulation output to a log file use the
following command for running the simulation and the terminal output will be
saved to the log file (log file can be viewed using less - check Appendix A).

>foamRun -solver incompressibleFluid > log

Time = 795s

smoothSolver: Solving for Ux, Initial residual = 0.00013831, Final residual =

9.28001e-06, No Iterations 6

smoothSolver: Solving for Uy, Initial residual = 0.000977894, Final residual =

6.73868e-05, No Iterations 6

GAMG: Solving for p, Initial residual = 0.00192871, Final residual =

0.000174838, No Iterations 7

time step continuity errors : sum local = 0.000840075, global = 6.13868e-05,

cumulative = -0.193739

smoothSolver: Solving for epsilon, Initial residual = 0.000175322, Final

residual = 1.138e-05, No Iterations 2

smoothSolver: Solving for k, Initial residual = 0.000404928, Final residual =

2.99083e-05, No Iterations 2

ExecutionTime = 56.7 s ClockTime = 57 s

SIMPLE solution converged in 795 iterations

3. Post-processing

The simulation results are as follows (all simulations scaled to the same range):

RAS
model

Velocity magnitude Turbulent viscosity

kEpsilon

kOmega

Velocity magnitude and turbulent viscosity for different RAS models

Tutorial Seven

Turbulence - Transient

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Seven

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Seven

Background

1. Large eddy simulation (LES)

In Large Eddy Simulation (LES), turbulence is modeled by distinguishing
between large-scale eddies and small-scale eddies within a fluid flow. The
fundamental idea behind LES is that large eddies are dependent on the
geometry and flow conditions, whereas small eddies exhibit more universal
behavior. This assumption allows for a computationally efficient approach to
turbulence modeling by resolving only the large eddies while modeling the
small-scale eddies using Sub-Grid Scale (SGS) models.

Compared to Reynolds-Averaged Navier-Stokes (RANS) models, which
completely model turbulence effects, LES provides a higher-fidelity simulation
since large eddies are explicitly resolved rather than approximated. However,
LES requires higher computational resources than RANS but significantly less
than Direct Numerical Simulation (DNS), making it an effective trade-off
between accuracy and computational feasibility.

Mathematically, it is like separating the velocity field into a resolved and sub-
grid part using a filter function. The resolved part of the field represents the
large eddies, while the sub grid part of the velocity represents the small eddies
whose effect on the resolved field is included through the sub grid-scale model.
Formally, one may think of filtering as the convolution of a function with a
filtering kernel 𝐺:

�̅�𝑖(�⃗�) = ∫ 𝐺(�⃗� − 𝜉)𝑢(𝜉)𝑑𝜉

resulting in

𝑢𝑖 = �̅�𝑖 + 𝑢,
𝑖

Where �̅�𝑖 is the resolvable scale part and 𝑢,
𝑖 is the subgrid-scale part. However,

most practical (and commercial) implementations of LES use the grid itself as
the filter and perform no explicit filtering. The filtered equations are developed
from the incompressible Navier-Stokes equations of motion:

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑗

(𝜐
𝜕𝑢𝑖

𝜕𝑥𝑗

)

Substituting in the decomposition 𝑢𝑖 = �̅�𝑖 + 𝑢,
𝑖 and p = p̅ + p, and then filtering

the resulting equation gives the equations of motion for the resolved field:

𝜕�̅�𝑖

𝜕𝑡
+ �̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗

= −
1

𝜌

𝜕�̅�

𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑗

(𝜐
𝜕�̅�𝑖

𝜕𝑥𝑗

) +
1

𝜌

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗

We have assumed that the filtering operation and the differentiation operation
commute, which is not generally the case. It is thought that the errors
associated with this assumption are usually small, though filters that commute
with differentiation have been developed. The extra term 𝜕𝜏𝑖𝑗/𝜕𝑥𝑗 arises from

the non-linear advection terms, because:

𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

≠ �̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗

OpenFOAM® Basic Training

Tutorial Seven

and hence

𝜏𝑖𝑗 = �̅�𝑖�̅�𝑗 − 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅

Similar equations can be derived for the sub grid-scale field. Sub grid-scale
turbulence models usually employ the Boussinesq hypothesis, and seek to
calculate (the deviatoric part of) the SGS stress using:

𝜏𝑖𝑗 −
1

3
τ𝑘𝑘δ𝑖𝑗 = −2μ𝑡𝑆�̅�𝑗

where 𝑆�̅�𝑗 is the rate-of-strain tensor for the resolved scale defined by

𝑆�̅�𝑗 =
1

2
(

𝜕�̅�𝑖

𝜕𝑥𝑗

+
𝜕�̅�𝑗

𝜕𝑥𝑖

)

and μ𝑡 is the subgrid-scale turbulent viscosity. Substituting into the filtered
Navier-Stokes equations, we then have:

𝜕�̅�𝑖

𝜕𝑡
+ �̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗

= −
1

𝜌

𝜕�̅�

𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑗

([𝜐 + 𝜐𝑡]
𝜕�̅�𝑖

𝜕𝑥𝑗

)

where we have used the incompressibility constraint to simplify the equation
and the pressure is now modified to include the trace term 𝜏𝑘𝑘𝛿𝑖𝑗/3.

2. k-Eqn model

The k-equation (kEqn) Large Eddy Simulation (LES) turbulence model is
designed to capture sub-grid scale (SGS) turbulence effects by solving a
transport equation for the SGS turbulence kinetic energy (k). This approach
enhances the accuracy of simulations involving complex turbulent structures.

The governing equation for the SGS turbulence kinetic energy k in the kEqn
LES model is:

𝜕ρk

𝜕𝑡
+ 𝛻 · (𝜌 𝑢 𝑘) = 𝛻 · (𝜌 𝐷ₖ 𝛻𝑘) + 𝜌𝐺 −

2

3
𝜌𝑘 (𝛻 · 𝑢) −

𝐶ₑ 𝜌 𝑘1.5

Δ
+ Sₖ

Where G is the production term of turbulence kinetic energy, Cₑ is the model
coefficient (default value: 1.048), Δ is the filter width and Sₖ is the source term.

This equation accounts for the transport, production, and dissipation of SGS
turbulence kinetic energy, providing a comprehensive representation of
turbulent flow dynamics.

3. Smagorinsky-Lilly model

One of the most widely used SGS models is the Smagorinsky-Lilly model, which
provides a simple way to estimate the sub-grid scale eddy viscosity:

𝜏𝑖𝑗 −
1

3
τ𝑘𝑘δ𝑖𝑗 = −2(C𝑠∆)2|𝑆̅|S𝑖𝑗

In the Smagorinsky-Lilly model, the eddy viscosity is modeled by

OpenFOAM® Basic Training

Tutorial Seven

𝜇𝑠𝑔𝑠 = ρ(C𝑠∆)2|𝑆̅|

Where the filter width is usually taken to be

∆= (𝑉𝑜𝑙𝑢𝑚𝑒)1/3

and

𝑆̅ = √2𝑆𝑖𝑗𝑆𝑖𝑗

The effective viscosity is calculated from

𝜇𝑒𝑓𝑓 = 𝜇𝑚𝑜𝑙 + 𝜇𝑠𝑔𝑠

The Smagorinsky constant usually has the value: 𝐶𝑠 = 0.1 − 0.2

Physical Interpretation

• The Smagorinsky model assumes that the energy cascade in turbulence
is local, meaning small eddies interact mostly with nearby structures.

• The filter width Δ\Delta determines the size of the smallest resolved
structures.

• The Smagorinsky constant Cs is a tunable parameter that affects model
accuracy.

o Higher Cs leads to stronger damping of small eddies.

o A lower Cs may lead to unresolved turbulence effects.

Smagorinsky model is simple and computationally efficient, while providing
reasonable approximations for turbulent energy dissipation, it works well for
high-Reynolds-number flows. On the other hand, the model does not account
for near-wall effects accurately, leading to overdamping of turbulence in
boundary layers and the constant Cs needs tuning for different flow conditions.

OpenFOAM® Basic Training

Tutorial Seven

incompressibleFluid – pitzDaily

Tutorial outline

Use the incompressibleFluid solver, run a backward facing step case for 0.2 s
with different turbulence models:

• Smagorinsky (LES)

• kEqn (LES)

• kEpsilon (RAS)

Objectives

• Understanding turbulence models

• Transient vs steady state simulation

• Finding appropriate turbulence model

Data processing

Display the results of U and the turbulent viscosity in two separate contour plots
at three different time steps. Compare with steady state simulation (Tutorial
Six).

OpenFOAM® Basic Training

Tutorial Seven

1. Pre-processing

1.1. Copying tutorial

Copy the tutorial from the following directory to your working directory:

$FOAM_TUTORIALS/incompressibleFluid/pitzDailyLESDeveloped

Inlet

Replace 0 directory with 0 directory from the following tutorial:

$FOAM_TUTORIALS/incompressibleFluid/pitzDaily

1.2. 0 directory

Set the proper turbulence model initial and boundary conditions and values.

Note: For different turbulent models, different files should be modified (check
Tutorial Six).

For kEpsilon model, the epsilon file need to be added and on the walls, for all
three properties: k, epsilon and nut, the wall-functions should be applied (based
on the y+ value) and proper initial values to be set. For more information:
https://www.openfoam.com/documentation/guides/latest/doc/guide-
turbulence.html

1.3. constant directory

As mentioned in Tutorial Six, in momentumTransport the turbulent model type
has to be set. The simulationType can be changed to LES or RAS. Depending

on which type is selected, the corresponding sub-dictionary needs to be
specified. Below is the momentumTransport file for the kEqn model, which is
an LES model.

// *

* * * * * *//

simulationType LES;

LES

{

LESModel kEqn;

turbulence on;

printCoeffs on;

delta cubeRootVol;

dynamicKEqnCoeffs

{

 filter simple;

}

cubeRootVolCoeffs

{

 deltaCoeff 1;

}

PrandtlCoeffs

{

 delta cubeRootVol;

 cubeRootVolCoeffs

 {

https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence.html

OpenFOAM® Basic Training

Tutorial Seven

 deltaCoeff 1;

 }

 smoothCoeffs

 {

 delta cubeRootVol;

 cubeRootVolCoeffs

 {

 deltaCoeff 1;

 }

 maxDeltaRatio 1.1;

 }

 Cdelta 0.158;

}

vanDriestCoeffs

{

 delta cubeRootVol;

 cubeRootVolCoeffs

 {

 deltaCoeff 1;

 }

 smoothCoeffs

 {

 delta cubeRootVol;

 cubeRootVolCoeffs

 {

 deltaCoeff 1;

 }

 maxDeltaRatio 1.1;

 }

 Aplus 26;

 Cdelta 0.158;

}

smoothCoeffs

{

 delta cubeRootVol;

 cubeRootVolCoeffs

 {

 deltaCoeff 1;

 }

 maxDeltaRatio 1.1;

}

}

// *

* * * * * *//

Note: For Smagorinsky, you can find the sample dictionary, including the
relevant settings in the following:

$FOAM_TUTORIALS/multiphaseEuler/LBend/constant/momentumTr

asport.gas

2. Running simulation

>blockMesh

>foamRun -solver incompressibleFluid

OpenFOAM® Basic Training

Tutorial Seven

3. Post-processing

The simulation results are as follows:

For the kEpsilon model after 0.2 s the results are similar to the steady state
simulation. Therefore, it can be assumed it has reached the steady state. Other
models do not have a steady situation and are fluctuating all the time, so they
require averaging for obtaining steady state results.

kEpsilon and other RAS models use averaging to obtain the turbulence values,
but LES does not include any averaging by default. Therefore, LES simulations
should use a higher grid resolution (smaller cells) and smaller time steps (for
reasonable Co number). Contour plots or other LES results should be
presented time averaged over reasonable number of time steps (not done in
this tutorial).

OpenFOAM® Basic Training

Tutorial Seven

Velocity magnitude Turbulent viscosity

Smagorinsky

0.01 s

0.05 s

0.2 s

kEqn

0.01 s

0.05 s

0.2 s

kEpsilon

0.01 s

0.05 s

0.2 s

Comparison of different turbulent models for transient simulation.

Tutorial Eight

Multiphase

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Eight

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Eight

Background

1. Multiphase flow

Multiphase flow refers to the simultaneous movement of two or more different
phases (solid, liquid, or gas). Each phase may contain one or more chemical
components. The common types of multiphase flows include:

• Gas-liquid flows (e.g., air bubbles in water, boiling liquids)

• Gas-solid flows (e.g., pneumatic transport, fluidized beds)

• Liquid-solid flows (e.g., sediment transport, slurry flows)

• Liquid-liquid flows (e.g., oil-water mixtures)

• Three-phase flows (e.g., water, gas, and solid mixtures in oil pipelines)

Multiphase flow can be further classified based on the flow regime:

• Separated flow: Distinct interfaces between phases (e.g., water flowing
under oil).

• Dispersed flow: One phase exists as discrete particles or droplets within
another continuous phase (e.g., bubbles in water, oil droplets in water).

• Mixed flow: A combination of separated and dispersed flow regions.

Multiphase flow is found in numerous applications, including chemical reactors
(bubble columns, distillation towers), oil and gas industries (flow through
pipelines, separation processes), environmental science (rain formation,
erosion due to sediment transport) and power plants (boiling in nuclear
reactors, cooling systems). Understanding and modeling multiphase flow is
crucial for improving efficiency, design optimization, and operational safety in
these applications.

2. Modeling approaches

Modeling of multiphase flow can be extremely complex, due to possible flow
regime transitions. To simplify the matter, different modeling approaches can
be adopted and they generally fall into two categories: lagrangian and Eulerian.
In the case of dispersed configuration, Lagrangian approach is more suitable.
This involves tracking individual point particles during its movement. The other
approach is the Eulerian approach, which observes fluid behavior in a given
control volume. Below we will cover some common modeling approaches of
multiphase flow.

2.1. Euler-Euler approach (Multi-fluid model)

All phases are treated as continuous in the Euler-Euler approach. This
approach is suitable for separated flows where each phase behaves as a
continuum, rather than being discrete. The phases interact through the drag
and lift forces acting between them, as well as through heat and mass transfer.
The Euler-Euler approach is also capable of modeling dispersed flow, where

OpenFOAM® Basic Training

Tutorial Eight

we are interested in the overall motion of particles rather than tracking individual
particles.

In the Euler-Euler approach, we introduce the concept of phasic volume
fractions. These fractions are assumed continuous functions of space and time,
with their sum equal to one. For each phase, a set of conservation equations
for mass, momentum and energy is solved individually; in addition, a transport
equation for the volume fraction is solved. Coupling between the phases is
achieved through shared pressure and interphase exchange coefficients.

2.2. Eddy Interaction Model

In the Eddy Interaction Model, each particle interacts with a succession of
eddies. The fluid motion of the particle is characterized by three parameters: i)
eddy velocity, ii) eddy lifetime, iii) eddy length. It follows the particle-tracking
Lagrangian approach.

The eddy lifetime (𝑡𝑒) and eddy length scale (𝑙𝑒) are estimated from the local
turbulence properties. From the length scale and the particle velocity, one can
calculate the eddy transit time (𝑡𝑐), i.e. the time taken for a particle to cross the
eddy. The particle is then assumed to interact with the eddy for a time, which is
the minimum of the eddy lifetime and the eddy transit time.

𝑡𝑖𝑛𝑡 = min(𝑡𝑒, 𝑡𝑐)

During that interaction, the fluid fluctuating velocity is kept constant and the
discrete particle is moved with respect to its equation of motion. Then a new
fluctuating fluid velocity is sampled and the process is repeated.

2.3. Volume of Fluid (VOF) method

VOF method belongs to the Eulerian class of modeling approach. It is based
on the idea of fraction function C. Fraction function indicates whether a
chosen phase is present inside the control volume. If C=1, the control volume
is completely filled with the chosen phase; if C=0, the control volume is filled
with a different phase. A value between 0 and 1 indicates that the interface
between phases is present inside the control volume. It is important in VOF
method that the flow domain is modeled on a fine grid, since the interface
should be resolved.

The focus of the VOF method is to track the interface between phases. To do
this, the transport equations are solved for mixture properties, assuming that all
field variables are shared between the phases. Then an advection equation for
the fraction function C is solved. The discretization of the fraction function
equation is crucial for obtaining a sharp interface.

OpenFOAM® Basic Training

Tutorial Eight

incompressibleVoF – damBreak

Tutorial outline

Use the incompressibleVoF solver to simulate breaking of a dam for 2s.

Objectives

• Understanding how to set viscosity, surface tension and density for two
phases

Data processing

See the results in ParaView.

OpenFOAM® Basic Training

Tutorial Eight

1. Pre-processing

1.1. Copying tutorial

Copy tutorial from the following folder to your working directory:

$FOAM_TUTORIALS/incompressibleVoF/damBreak

1.2. 0 directory

In the 0 directory, in the alpha.water.orig and p_rgh files, the initial values and
boundary conditions for water phase and pressure are set. Copy
alpha.water.orig to alpha.water (remember: the *.orig files are back up files, and
solvers do not use them). E.g. in alpha.water:

// *

* * * * * *//

dimensions [];

internalField uniform 0;

boundaryField

{

 #includeEtc “caseDicts/setConstrainTypes”

 wall

 {

 type zeroGradient;

 }

 atmosphere

 {

 type inletOutlet;

 inletValue uniform 0;

 value uniform 0;

 }

}

// *

* * * * * *//

#includeEtc includes the etc folder in the OpenFOAM installation directory

and the path “caseDicts/setConstrainTypes” instruct it to include the

boundaries in this file also here. In this case the empty boundary is used for
this tutorial.
Checking the blockMeshDict file there is no boundary named wall, the wall in

the boundaryField section of files in the 0 is for using the same boundary

condition for the boundaries which have type wall.

Note: If in the files in 0 directory some not used boundaries are defined, as far
as their syntax is correct, OpenFOAM will ignore them, so you don’t need to
remove them!

Note: In the dimensions section [] is equal to [0 0 0 0 0 0 0] and it means

it is a dimensionless parameter.

Note: The inletOutlet and the outletInlet boundary conditions are used

when the flow direction is not known. In fact, these are derived types and are a
combination of two different boundary types.

OpenFOAM® Basic Training

Tutorial Eight

- inletOutlet: When the flux direction is toward the outside of the

domain, it works like a zeroGradient boundary condition and when the
flux is toward inside the domain it is like a fixedValue boundary condition.

- outletInlet: This is the other way around, if the flux direction is toward

outside the domain, it works like a fixedValue boundary condition and
when the flux is toward inside the domain, it is like a zeroGradient
boundary condition.

E.g. if the velocity field outlet is set as inletOutlet and the inletValue is set

to (0 0 0), it avoids backflow at the outlet! The “inletValue” or

“outletValue” are values for fixedValue type of these boundary conditions

and “value” is a dummy entery for OpenFOAM® for finding the variable type.

Using (0 0 0), OpenFOAM® understands that the variable is a vector.

1.3. constant directory

In the file phaseProperties, there is the list of phases in the simulation (in this
case air and water):

// *

* * * * * *//

Phases (water air);

sigma 0.07;

// *

* * * * * *//

and sigma is the surface tension between two phases, in this example it is the

surface tension between air and water.

For each phase, there is a dedicated physicalProperties.fileName file, in which
the properties of the relevant phase can be set. E.g. the
physicalProperties.water file looks as following:

// *

* * * * * *//

viscosityModel constant;

nu 1e-06;

rho 1000;

// *

* * * * * *//

In both phases the coefficients for different models of viscosity are given, e.g.
nu and rho. Depending on which model is selected, the corresponding

coefficients are read. In this simulation, the selected model is constant

(representing Newtonian model), therefore only the nu coefficient is needed.

Checking the g file, the gravitational field and its direction are defined, it is
9.81 m/s2 in the negative y direction.

// *

* * * * * *//

dimensions [0 1 -2 0 0 0 0];

value (0 -9.81 0);

OpenFOAM® Basic Training

Tutorial Eight

// *

* * * * * *//

1.4. system directory

In the controlDict change the endTime to 2, for 2s of simulation.

2. Running simulation

>blockMesh

>setFields

>foamRun -solver incompressibleVoF

3. Post-processing

The simulation results are as follows (these are not the results for the original
mesh, but a 2x refined mesh):

OpenFOAM® Basic Training

Tutorial Eight

0.0 s

0.05 s

0.1 s

0.30 s

0.35 s

0.4 s

0.70 s

1.0 s

2.0 s

Contours of the water volume fraction at different time steps

Tutorial Nine

Parallel Processing

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Nine

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Nine

Background

1. Parallel computing

Modern Computational Fluid Dynamics (CFD) problems often involve complex
geometries, turbulence, multiphase flows, and chemical reactions, making
simulations computationally expensive. Parallel computing reduces
computation time by distributing the workload across multiple processors,
enabling simulations that would otherwise be infeasible on a single machine.

Parallel computing involves dividing the computational domain into smaller sub-
domains, which are assigned to different processors. This step is known as
domain decomposition. These processors simultaneously perform
calculations and communicate with each other to synchronize data exchange.
This approach significantly reduces computational time, making it essential for
large-scale simulations in engineering and scientific research.

Parallel computing can be carried out in two ways. One is done on a single
computer with multiple internal processors, known as a Shared Memory
Multiprocessor. The other way is achieved through a series of computers
interconnected by a network, known as a Distributed Memory Multicomputer.

1.1. Shared versus distributed memory

Shared Memory
Multiprocessor

Distributed Memory
Multicomputer

Memory
Data is saved in a global

memory that can be accessed by
all processors

Each computer has a local
memory and a processor can only

access its local memory

Data transfer
between

processors

The sender processor simply
needs to write the data in a

global variable and the receiver
can read it

Message is sent explicitly from
one computer to another using a

message passing library, e.g.
Message Passing Interface (MPI)

In OpenFOAM® the application of parallel computing can be executed using the
decomposePar command. This allows the solver to be run on multiple
processors. The workflow of parallel computation in OpenFOAM® is
summarized below:

• Division of the mesh into sub-domains

• Running of the solver in parallel

• Reconstruction of the meshes and connecting the results.

2. Introduction to compressible flow

Until now, we have primarily considered incompressible fluid flows, where the
density remains constant. However, in many real-world scenarios, fluid density
varies significantly due to changes in pressure and temperature. This variation

OpenFOAM® Basic Training

Tutorial Nine

in density makes the flow compressible, requiring specialized solvers and
numerical methods.

A classic example of compressible flow is the flow through a converging-
diverging nozzle, where fluid accelerates to supersonic speeds. Compressibility
becomes dominant in flows when the Mach number is greater than about 0.3.
The Mach number is defined as follows:

𝑀𝑎 =
𝑢

𝑐
=

𝑙𝑜𝑐𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑

Flow Classification Based on Mach Number:

• Subsonic Flow (Ma < 0.3): Flow is nearly incompressible, and density
changes are negligible.

• Transonic Flow (0.3 < Ma < 1.0): Density variations begin to affect flow
behavior.

• Supersonic Flow (Ma > 1.0): Shock waves and expansion waves
appear, requiring advanced solvers.

• Hypersonic Flow (Ma > 5.0): Extremely high-speed flow, where thermal
and chemical effects become significant.

When a fluid flow is compressible, temperature and pressure are affected
strongly by variations in density. It is therefore important to consider the linkage
between pressure, temperature and density in compressible flow, usually by
applying an equation of state from thermodynamics, e.g. the ideal gas equation.
More complex real-gas equations of state (e.g., Peng-Robinson, Van der
Waals) may be required for high-pressure or reactive flows.

3. Compressible flow solvers

There are two general types of solution schemes for compressible flow:
pressure-based and density-based.

3.1. Pressure-based solvers

This type of solver was historically derived from the solution approach used on
incompressible flows. They solve for the primitive variables. The discretized
momentum and energy equations are used to update velocities and energy.
The pressure is obtained by applying a pressure-correction algorithm on the
continuity and momentum equations. Density is then calculated from the
equation of state.

3.2. Density-based solvers

Density-based solvers are suitable for solving the conserved variables. Similar
to pressure-based solvers, the conversed velocity and energy terms are
updated from the discretized momentum and energy equations. We can then
solve for density from the continuity equation, afterwards we use the equation
of state to update the pressure.

OpenFOAM® Basic Training

Tutorial Nine

In general, density based solvers are more suitable for high-speed
compressible flows with shocks. This is because density based solvers solve
for conserved quantities across the shock, so the discontinuities will not affect
the results.

OpenFOAM® Basic Training

Tutorial Nine

compressibleVoF – depthCharge3D

Tutorial outline

Use the compressibleVoF solver, simulate the example case for 0.5 s.

Objectives

• Understanding the difference between incompressible and compressible
solvers

• Understanding parallel processing and different discretization methods

Data processing

Investigate the results in ParaView.

OpenFOAM® Basic Training

Tutorial Nine

1. Pre-processing

1.1. Copying tutorial

Copy the tutorial from following directory to your working directory:

$FOAM_TUTORIALS/compressibleVoF/depthCharge3D

1.2. 0 directory

In the 0 directory copy the alpha.water.orig, p.orig, p_rgh.orig and T.orig files to
alpha.water, p, p_rgh and T respectively.

Note: You can also skip copying the *.orig files, since running the setFields will
do it for you.

1.3. constant directory

Phases and common physical properties of the two phases are set in the
phaseProperties file.

// *

* * * * * *//

phases (water air);

sigma 0.07;

// *

* * * * * *//

Individual phase properties are set in physicalProperties.phase files, e.g.
physicalProperties.air.

1.4. system directory

The decomposeParDict file includes the parallel settings, such as the number
of domains (partitions) and also how the domain is going to be divided into
these subdomains for parallel processing.

// *

* * * * * *//

numberOfSubdomains 4;

method hierarchical;

simpleCoeffs

{

 n (1 4 1);

}

hierarchicalCoeffs

{

 n (1 4 1);

 order xyz;

}

manualCoeffs

{

 dataFile "";

}

OpenFOAM® Basic Training

Tutorial Nine

distributed no;

roots ();

// *

* * * * * *//

numberOfSubdomains should be equal to the number of cores used. method

should show the method to be used. In the above example, the case is
simulated with the hierarchical method and 4 processors.

If the simple method is being used, the parameter n must be changed

accordingly. The three numbers (1 4 1) indicate the number of pieces the

mesh is split into in the x, y and z directions, respectively. Their multiplication
result should be equal to numberOfSubdomains.

If the hierarchical method is being used, these parameters and the order in

which the mesh should be split up in each direction should be provided.

If the scotch method is being used, then no user-supplied parameters are

necessary except for the number of subdomains.

Note: In order to check the quality of the mesh, the checkMesh tool can be used
(run it from main case directory). If the message “Mesh OK” is displayed – the

mesh is fine and no corrections need to be done. If the mesh fails in one or
more tests, try to recreate or refine the mesh for a better mesh quality (less non-
orthogonally and skewness).

If non-orthogonal cells exist in a mesh, another option is using non-orthogonal
corrections in the fvSolution file in the algorithm sub-dictionary (e.g. PIMPLE or

PISO). Usually using 1 or 2 as nNonOrthogonalCorrectors is enough.

2. Running simulation

>blockMesh

>setFields

For running the simulation in parallel mode the computing domain needs to be
divided into subdomains and a core should be assigned to each subdomain.
This is done by following command:

>decomposePar

This decomposes the mesh according to the supplied instructions. One
possible source of error is the product of the parameters in n does not match

up to the number of the subdomains. This appears for the simple and
hierarchical methods.

After executing this command four new directories will be made in the
simulation directory (processor0, processor1, processor2 processor3), and
each subdomain calculation will be saved in the respective processor directory.

Note: When the domain is divided to subdomains in parallel processing new
boundaries are defined. The data should be exchanged with the neighbor
boundary, which it is connected to in the main domain.

OpenFOAM® Basic Training

Tutorial Nine

>mpirun -np <No of cores> solver –parallel > log

<No of cores> is the number of cores being used. solver is the solver for

this simulation. For example, if 4 cores are desired, and the solver is

compressibleInterFoam following command is used:

>mpirun -np 4 foamRun -solver compressibleVoF -parallel >

log

> log is the filename for saving the simulation status data, instead of printing

them to the screen. For checking the last information which is written to this file
the following command can be used during the simulation running:

>tail –f log

Note: Before running any simulation, it is important to run the top command
(type the ‘top’ command in the terminal), to check the number of cores currently
used on the machine. Check the load average. This is on the first line and
shows the average number of cores being used. There are three numbers
displayed, showing the load averages across three different time scales (one,
five and 15 minute respectively).

Add the number of cores you plan to use to this number – and you will get the
expected load average during your simulation. This number should be less than
the total number of cores in the machine – or the simulation will be slowed or
the machine will crash (if you run out of memory). If you are running on a multi
user server it is recommended to leave at least a few cores free, to allow for
any fluctuations in the machine load.

Note: top command execution can be interrupted by typing q (or ctrl+c)

The simulation can take several hours, depending on the size of the mesh and
time step size.

3. Post-processing

For exporting data for post processing, at first all the processors data should be
put together and a single combined directory for each time step was created.
By executing the following command all the cores data will be combined and
new directories for each time step will be created in the simulation main
directory:

>reconstructPar

Convert the data to ParaView format:

>foamToVTK

Note: To do the reconstruction or foamToVTK conversion from a start time until
an end time the following flags can be used:

>reconstructPar –time [start time name, e.g. 016]:[end time

name, e.g. 020]

OpenFOAM® Basic Training

Tutorial Nine

>foamToVTK –time [start time name, e.g. 016]:[end time

name, e.g. 020]

Using above commands without entering end time will do the reconstruction or
conversion from start time to the end of available data:

>reconstructPar –time [start time name, e.g. 016]:

>foamToVTK –time [start time name, e.g. 016]:

For reconstructing or converting only one time step the commands should be
used without end time and “:”:

>reconstructPar –time [time name, e.g. 016]

>foamToVTK –time [time name, e.g. 016]

OpenFOAM® Basic Training

Tutorial Nine

The simulation results are as follows:

0 s

0.05 s

0.1 s

0.15 s

0.20 s

0.25 s

0.3 s

0.4 s

0.5 s

3D depth charge, alpha = 0.5 iso-surfaces, parallel simulation

OpenFOAM® Basic Training

Tutorial Nine

4. Manual method

4.1. Case set-up and running simulation

The manual method for decomposition is slightly different from the other three.
In order to use it:

After running the blockMesh and setFields utilities, set the decomposeParDict
file as any other simulation. For decomposition method, choose either simple,
hierarchical or scotch. Set the number of cores to the same number which is
going to be used for manual.

>decomposePar –cellDist

Once the decomposition is done, check the cellDecomposition file in the
constant directory. It should have a format similar to:

// *

* * * * * *//

1024000

(

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1 ...)

// *

* * * * * *//

Note: If the above output is not displayed, but a stream of NUL characters, your
text editor is probably printing binary. To fix this, open system/controlDict, and
change the writeFormat field from binary to asci and rerun the previous

command.

The first number n after the header, but before the opening brackets, 1024000

in this example, refers to the number of points in the mesh. Within the brackets,
n lines follow. Each line contains one number between 0 and n-1, where n is

the number of cores to be used for the computation. This number refers to the
core being used to compute the corresponding cell in the points file in the
constant directory. For example, if the second line in the points file brackets

OpenFOAM® Basic Training

Tutorial Nine

reads (0.125 0 0) and the second line in the cellDecomposition directoy

reads 0, this means that the cell (0.125 0 0) will be processed by processor

0.

This cellDecomposition file can now be edited. Although this can be done
manually, it is probably not feasible for any sufficiently large mesh. The process
must thus be automated by writing a script to populate the cellDecomposition
file according to the desired processor breakdown.

When the new file is ready, save it under a different name:

>cp cellDecomposition manFile

Now, edit the decomposeParDict file. Select decomposition method manual,

and for the dataFile field in the manual coeffs range, specify the path to the

file which contains the manual decomposition. Note that OpenFOAM® searches
in the constant directory by default, in case relative paths are being used:

// *

* * * * * *//

numberOfSubdomains 4;

method manual;

simpleCoeffs

{

 n (1 4 1);

 delta 0.001;

}

hierarchicalCoeffs

{

 n (1 4 1);

 delta 0.001;

 order xyz;

}

manualCoeffs

{

 dataFile "manFile";

}

distributed no;

roots ();

// *

* * * * * *//

Delete the old processor directories, decompose the case with the new
decomposition settings and run the simulation.

4.2. Visualizing the processor breakdown

It may be interesting to visualize how exactly OpenFOAM® breaks down the
mesh. This can be easily visualized using ParaView. After running the
simulation, but before running the reconstructPar command, repeat the
following for each of the processor directories:

>cd processor<n>

OpenFOAM® Basic Training

Tutorial Nine

where n is the processor number

>foamToVTK

convert the individual processor files to VTK, next, open ParaView:

>paraview &

For each of the processor directories, perform the following steps:

- Open the VTK files in the relevant processor directory

- Double click them to open them and click on “Apply”

- The part of the mesh decomposed by that core will appear, in grey.

- Change the color in the drop-down menus in the toolbar. This is to
ensure that each individual part can be easily seen.

Once this is done for all processors, the entire mesh will appear. However, the
processor regions can now easily be seen in a different color.

In order to save this, there are two options. The first option is to take a
screenshot:

File > Save a screenshot

The second option is to save the settings and modifications as a ParaView state
file.

File > Save State

The current settings and modifications can then be easily recovered by:

File > Load State

Saving the state allows changes to be made afterwards. Saving a screenshot
keeps only a picture, while losing the ability to make changes after exiting
ParaView. Doing both is recommended.

Tutorial Ten

Residence Time Distribution

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Ten

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Ten

Background

In this tutorial, we will carry out Residence Time Distribution (RTD) analysis of
fluid flow through a T-junction pipe.

1. Residence Time Distribution (RTD)

Residence Time Distribution (RTD) is a probability distribution function that
describes the amount of time a fluid element spends in a process unit, such as
a reactor, column, or pipe. Understanding RTD is crucial for analyzing the
performance, efficiency, and mixing characteristics of industrial systems. Unlike
ideal flow assumptions, most real-world fluid flows involve recirculation,
bypassing, and dispersion, which RTD helps quantify. A few RTD applications:

• Optimizing reactor design by ensuring effective residence time for
reactions.

• Identifying flow inefficiencies such as dead zones and short-circuiting.

• Enhancing mixing performance in industrial processes.

• Improving scale-up accuracy for chemical, pharmaceutical, and
wastewater applications.

By understanding RTD, engineers can optimize designs, improve product yield,
and enhance process reliability.

2. Tracer Analysis
Tracer analysis is a widely used technique for RTD measurement, where a
tracer substance (such as dye, salt, or radioactive material) is injected into the
system, and its concentration at the outlet is monitored over time. This provides
insight into how fluid elements move through the process unit and allows
engineers to quantify the RTD function.

Tracer analysis and RTD distribution of an ideal process

Based on the above diagram, first the tracer is injected into the inlet, and then
the exit tracer concentration, 𝐶(𝑡), is measured at regular time intervals. This

allows the exit age distribution, 𝐸(𝑡), to be calculated.

OpenFOAM® Basic Training

Tutorial Ten

𝐸(𝑡) =
𝐶𝑇(𝑡)

∫ 𝐶𝑇(𝑡) 𝑑𝑡
∞

0

=
𝑇𝑟𝑎𝑐𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑐𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

It is clear from the above equation that the fraction of tracer molecules exiting
the reactor that have spent a time between 𝑡 and 𝑡 + 𝑑𝑡 in the process unit is
𝐸(𝑡)𝑑𝑡. Since all tracer elements will leave the unit at some point, RTD satisfies
the following relationship:

∫ 𝐸(𝑡) 𝑑𝑡 = 1
∞

0

Types of Flow Patterns Identified by RTD

• Ideal Plug Flow: All fluid particles have the same residence time,
resulting in a sharp, narrow RTD peak.

• Perfectly Mixed Flow (CSTR - Continuous Stirred Tank Reactor): Fluid
particles experience a wide range of residence times, leading to a broad
RTD distribution.

• Dead Zones and Recirculation: Cause multiple peaks in the RTD curve,
indicating poor mixing and stagnation.

• Bypassing Flow: Results in a steep initial RTD rise, meaning some fluid
exits much earlier than expected.

OpenFOAM® Basic Training

Tutorial Ten

incompressibleFluid & functions – TJunction

Tutorial outline

Use the incompressibleFluid and functions to simulate the flow through a
square cross section T pipe and calculate RTD (Residence Time Distribution)
for both inlets using a step function injection:

• Inlet and outlet cross-sections: 1 × 1 m2

• Gas in the system: air at ambient conditions

• Operating pressure: 105 Pa

• Inlet 1: 0.1 m/s

• Inlet 2: 0.2 m/s

Objectives

• Understanding RTD calculation using OpenFOAM®

• Using multiple solvers for a simulation

Data processing

Plot the step response function and the RTD curve.

OpenFOAM® Basic Training

Tutorial Ten

1. Pre-processing

1.1. Copying tutorial

Copy the following tutorial to your working directory as a base case:

$FOAM_TUTORIALS/incompressibleFluid/pitzDaily

Replace the system directory with the system directory from the following
tutorial:

$FOAM_TUTORIALS/incompressibleFluid/pitzDailySteadyExperi

mentalInlet

Copy the pitzDaily file for the pitzDaily geometry from following directory to your
system directory:

$FOAM_TUTORIALS/resources/blockMesh

1.2. 0 directory

Update p, U, nut, nuTilda, k and epsilon files with the new boundary conditions
(in this simulation the following boundaries should be set inlet_one, inlet_two,
oulet and walls), e.g. for file U:

// *

* * * * * *//

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 inlet_one

 {

 type fixedValue;

 value uniform (0.1 0 0)

 }

 inlet_two

 {

 type fixedValue;

 value uniform (-0.2 0 0)

 }

 outlet

 {

 type zeroGradient;

 }

 walls

 {

 type fixedValue;

 value uniform (0 0 0)

 }

}

// *

* * * * * *//

1.3. constant directory

Check momentumTransport file for the turbulence model (kEpsilon).

OpenFOAM® Basic Training

Tutorial Ten

// *

* * * * * *//

simulationType RAS

RAS

{

 model kEpsilon;

 turbulence on;

 printCoeffs on;

}

// *

* * * * * *//

1.4. system directory

Rename the pitzDaily file to blockMeshDict and edit it to create the geometry.

// *

* * * * * *//

convertToMeters 1.0;

vertices

(

 (0 4 0) // 0

 (0 3 0) // 1

 (3 3 0) // 2

 (3 0 0) // 3

 (4 0 0) // 4

 (4 3 0) // 5

 (7 3 0) // 6

 (7 4 0) // 7

 (4 4 0) // 8

 (3 4 0) // 9

 (0 4 1) // 10

 (0 3 1) // 11

 (3 3 1) // 12

 (3 0 1) // 13

 (4 0 1) // 14

 (4 3 1) // 15

 (7 3 1) // 16

 (7 4 1) // 17

 (4 4 1) // 18

 (3 4 1) // 19

);

blocks

(

 hex (0 1 2 9 10 11 12 19) (10 30 10) simpleGrading (1 1 1)

 hex (9 2 5 8 19 12 15 18) (10 10 10) simpleGrading (1 1 1)

 hex (8 5 6 7 18 15 16 17) (10 30 10) simpleGrading (1 1 1)

 hex (2 3 4 5 12 13 14 15) (30 10 10) simpleGrading (1 1 1)

);

boundary

(

 inlet_one

 {

 type patch;

 faces

 (

 (0 10 11 1)

);

 }

 inlet_two

 {

 type patch;

 faces

 (

 (7 6 16 17)

OpenFOAM® Basic Training

Tutorial Ten

);

 }

 outlet

 {

 type patch;

 faces

 (

 (4 3 13 14)

);

 }

 walls

 {

 type wall;

 faces

 (

 (0 1 2 9)

 (2 5 8 9)

 (5 6 7 8)

 (2 3 4 5)

 (10 19 12 11)

 (19 18 15 12)

 (18 17 16 15)

 (15 14 13 12)

 (0 9 19 10)

 (9 8 18 19)

 (8 7 17 18)

 (2 1 11 12)

 (3 2 12 13)

 (5 4 14 15)

 (6 5 15 16)

);

 }

);

// *

* * * * * *//

2. Running simulation

>blockMesh

Mesh created using blockMesh

>foamRun -solver incompressibleFluid

Wait for simulation to converge. After convergence, check the results to make
sure about physical convergence of the solution.

>foamToVTK

OpenFOAM® Basic Training

Tutorial Ten

The simulation results are as follows (results are on the cut plane in the middle):

Simulation results after convergence (~65 iterations)

3. RTD calculation

3.1. Copy tutorial

Copy following tutorial to your working directory:

$FOAM_TUTORIALS/incompressibleFluid/pitzDailyScalarTransp

ort

In the 0 directory, just keep the T file and delete all other files.

3.2. 0 directory

Copy and paste the U and p files from the latest time step of the simulation in
the first part of the tutorial (use the latest time step velocity field from previous
part of simulation to calculate RTD for this geometry). There is no need to
modify or change it. The solver will use this field to calculate the scalar
transportation.

Update T (T will be used as an inert scalar in this simulation) file boundary
conditions to match new simulation boundaries, to calculate RTD of the
inlet_one set the internalField value to 0, T value for inlet_one to 1.0

and T value for inlet_two to 0.

3.3. constant directory

In the momentumTransport file set the simulationType to laminar.

3.4. system directory

Copy the blockMeshDict file from the first part of tutorial.

In the controlDict file change the endTime from 0.2 to 120 (approximately two

times ideal resistance time) and deltaT from 0.0001 to 0.1 (Courant number

approximately 0.4).

OpenFOAM® Basic Training

Tutorial Ten

4. Running Simulation

>blockMesh

>foamRun -solver functions

>foamToVTK

5. Post-processing

Contour plots scalar T at 120 s for inlet 1

5.1. Calculating RTD

To calculate RTD the average T value at the outlets should be calculated first.
The “integrate variables function” of ParaView can be used for this purpose.

>foamToVTK

Load the outlet VTK file into paraview using following path:

File > Open > VTK > outlet > outlet_..vtk > OK > Apply

Select T from variables menu, and then integrate the variables on the outlet:

Filters > Data Analysis > Integrate Variables > Apply

The values given in the opened window are integrated values in this specific
time step. By changing the time step values for different time steps are
displayed. As mentioned before, the average value of the property is needed.
Therefore, these values should be divided by outlet area to get average values

(1m 1m).

After finishing the RTD calculations for inlet_one, the same procedure should

be followed for calculating RTD of inlet_two, except T value for inlet_one

should be 0 and for inlet_two it should be 1.0.

OpenFOAM® Basic Training

Tutorial Ten

Average value of T on the outlet for two inlets versus time

The average value of T for each outlet approaches a certain constant value,
which is the ratio of that scalar mass inlet to the whole mass inlet. For plotting
data over time “Plot Selection Over Time” option in ParaView can be used, in
the opened SpreadSheetView window (IntegrateVariables) select the set of
data which you want to plot over time and then:

Filters > Data Analysis > Plot Selection Over Time > Apply

Next, to obtain the RTD plots, export the data to a spreadsheet program (e.g.
Excel), calculate and plot the gradient of changes in average value of T on the
outlet from time 0 to 120s for both inlets.

RTD of two inlets

Tutorial Eleven

Reaction

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Eleven

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Eleven

Background

In computational fluid dynamics (CFD) and chemical reaction modeling, two
commonly used approaches to simulate reactive flows are the Partially Stirred
Reactor (PaSR) Model and the Eddy Dissipation Concept (EDC) Model. These
models help in understanding and predicting how chemical reactions occur in
different flow environments, such as combustion, industrial chemical
processing, pollutant dispersion, and atmospheric chemistry.

1. Partially stirred reactor (PaSR) Model

Partially stirred rector (PaSR) model is used to model thermodynamic and
chemical reactions numerically, for example, combustion. In the PaSR
approach, a computational cell is split into two different zones: a reacting zone
and a non-reacting zone. The reacting zone is modeled as a perfectly stirred
reactor (PSR), and all reactants are assumed to be perfectly mixed with each
other.

For the reactor, we are interested in three concentrations, 1) mean
concentration of key component in the feed, 𝑐𝑖𝑛; 2) mixture concentration in the

reacting zone, 𝑐; 3) concentration at the reactor exit𝑐𝑒𝑥𝑖𝑡.

In the reacting zone, reaction occurs for a duration of 𝜏𝑐, so the concentration
of mixture changes from 𝑐𝑖𝑛 to 𝑐. In the non-reacting zone, the reacted mixture
is getting mixed up with the non-reacted mixture for a duration of 𝜏𝑚𝑖𝑥, resulting

in the final exit concentration, 𝑐𝑒𝑥𝑖𝑡.

A key parameter to be calculated in this model would be the reaction rate, and
it is clear that the reaction rate is proportional to the ratio of the chemical
reaction time to the total conversion time in the reactor (i.e. sum of reacting and
mixing time), 𝜅𝑘:

𝜅𝑘 =
𝜏𝑐

𝜏𝑐 + 𝜏𝑚𝑖𝑥

2. Eddy dissipation concept (EDC) Model

The Eddy Dissipation Concept (EDC) model looks at the interaction between
reaction and turbulence, where the overall reaction rate is controlled by
turbulent mixing. It is widely used for combustion modeling for a great variety
of combustion environments with great success.

It is assumed in the model that most reaction takes place within fine turbulence
structures, which are modeled as perfectly-mixed reactors. We need to know
the reaction mass fraction and the mass transfer rate between the fine
structures and its surrounding fluid.

The mass fraction occupied by the fine structures, 𝛾∗, is expressed as:

𝛾∗ = {
𝑢∗

𝑢′
}

2

Where 𝑢∗ is the mass average fine structure velocity. The fine structures are in

regions with nearly constant turbulent kinetic energy given by 𝑢′2.

OpenFOAM® Basic Training

Tutorial Eleven

The mass transfer rate between fine structure and surrounding fluid per unit of
fluid and per unit of time is modeled as:

�̇� = 2 ⋅
𝑢∗

𝐿∗
⋅ 𝛾∗

where 𝐿∗ is the characteristic length of the fine structure.

OpenFOAM® Basic Training

Tutorial Eleven

multicomponentFluid – reactingElbow

Tutorial outline

Use the multicomponentFluid solver; simulate combustion of CH4 and O2 in a
mixing elbow:

• Use the two times finer Hex mesh from Example One

• Domain initially filled with N2

• velocity-inlet-5:

- Velocity: 1 m/s

- Mass fractions: 23 % O2, 77 % N2

- Temperature: 800 K

• velocity-inlet-6:

- Velocity: 3 m/s

- Mass fractions: 50 % CH4, 50 % N2

- Temperature: 293 K

• Operating pressure: 105 Pa

• Operating temperature: 298 K

• Isolated walls

Objectives

• Understanding multi-species and reaction modeling in OpenFOAM®

Data processing

Evaluate your results in ParaView.

OpenFOAM® Basic Training

Tutorial Eleven

1. Pre-processing

1.1. Copying tutorial

Copy the following tutorial to your working directory:

$FOAM_TUTORIALS/multicomponentFluid/counterFlowFlame2D

Copy the GAMBIT® mesh from Tutorial One (two times finer mesh) to the case
main directory.

1.2. 0 directory

Update all the files in 0 directory with new boundary conditions, e.g. U:

// *

* * * * * *//

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 wall-4

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 velocity-inlet-5

 {

 type fixedValue;

 value uniform (1 0 0);

 }

 velocity-inlet-6

 {

 type fixedValue;

 value uniform (0 3 0);

 }

 pressure-outlet-7

 {

 type zeroGradient;

 }

 wall-8

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 frontAndBackPlanes

 {

 type empty;

 }

}

// *

* * * * * *//

The reaction taking place in this simulation CH4 combusting with O2 creating
CO2 and H2O. N2 is the non-reacting species. The boundary conditions and

OpenFOAM® Basic Training

Tutorial Eleven

initial value of all species should be defined in the 0 directory. These values are
mass fractions (between 0 and 1) and dimension less, e.g. CH4:

// * //

dimensions [0 0 0 0 0 0 0];

internalField uniform 0.0;

boundaryField

{

 wall-4

 {

 type zeroGradient;

 }

 velocity-inlet-5

 {

 type fixedValue;

 value uniform 0; //no CH4 at this inlet

 }

 velocity-inlet-6

 {

 type fixedValue;

 value uniform 0.5; //50% CH4 mass fraction at this inlet

 }

 pressure-outlet-7

 {

 type zeroGradient;

 }

 wall-8

 {

 type zeroGradient;

 }

 frontAndBackPlanes

 {

 type empty;

 }

}

// *** //

Note: If the file for a species does not exist in the 0 directory, the values from
Ydefault will be used for that species.

Note: For the pressure-outlet-7 set the species boundary conditions to

zeroGradient.

1.3. constant directory

In the physicalProperties file the physical properties of the species can be set:

// *

* * * * * *//

thermoType

{

 type hePsiThermo;

 mixture coefficientWilkeMultiComponentMixture;

 transport sutherland;

 thermo janaf;

 energy sensibleEnthalpy;

 equationOfState perfectGas;

 specie specie;

}

OpenFOAM® Basic Training

Tutorial Eleven

defaultSpecie N2;

#include "thermo.compressibleGas"

// *

* * * * * *//

The mixture type is set to a multi-component mixture for calculating the mixture
properties and the heat capacities are calculated using “janaf polynomials”.

N2 is defines as defaultSpecie. In reaction solvers in OpenFOAM® the default

specie is calculated explicitly using the mass balance equation (to satisfy mass
conservation):

𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡 𝑠𝑝𝑒𝑐𝑖𝑒 = 1 − ∑ 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

Involved species are listed in the thermo.compressibleGas file, which was
included at the end of physicalProperties file. The species in this simulation are
O2, H2O, CH4, CO2 and N2. They are defined in the species sub-dictionary:

species

(

 O2

 H2O

 CH4

 CO2

 N2

);

The reactions are addressed in the reactions file:

reactions

{

 methaneReaction

 {

 type irreversibleArrhenius;

 reaction "CH4 + 2O2 = CO2 + 2H2O";

 A 5.2e16;

 beta 0;

 Ta 14906;

 }

}

in the reactions sub-dictionary. The reaction of methane combustion is

defined and it is of type irreversible Arrhenius reaction,

irreversibleArrhenius.

In the Tutorial Two it was explained that the coefficients for calculating gas
mixture properties are defined in the mixture sub-dictionary because it was a

homogeneous mixture. However, in this example the mixture is not
homogenous so coefficients for calculating properties of each species are
needed separately to calculate mixture properties based on each cell
composition. The coefficients of each species are defined in the
thermo.compressibleGas file from the constant directory. For example, the O2

coefficients for each model are shown below:

// *

* * * * * *//

O2

{

 specie

 {

 molWeight 31.9988;

OpenFOAM® Basic Training

Tutorial Eleven

 }

 thermodynamics

 {

 Tlow 200;

 Thigh 5000;

 Tcommon 1000;

 highCpCoeffs (3.69758 0.00061352 -1.25884e-07 1.77528e-11 -

 1.13644e-15 -1233.93 3.18917);

 lowCpCoeffs (3.21294 0.00112749 -5.75615e-07 1.31388e-09 –

 8.76855e-13 -1005.25 6.03474);

 }

 transport

 {

 As 1.753e-06;

 Ts 139;

 }

}

…

// *

* * * * * *//

In the thermodynamics sub-dictionary, the janaf polynomial model coefficients

for calculating the heat capacity can be found and in transport the sutherland

model coefficients for viscosity are stored.

1.4. system directory

By setting the adjustTimeStep to yes in the controlDict, the solver

automatically ignores deltaT, and calculates the deltaT based on the

maximum Courant number maxCo defined for it. Change the endTime to 120

(approximately one time the volumetric residence time based on velocity-inlet-
5) and writeInterval to 10, to write every 10 s to case directory.

// *

* * * * * *//

application foamRun;

solver multicomponentFluid

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 120;

deltaT 1e-6;

writeControl adjustableRunTime;

writeInterval 10;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

OpenFOAM® Basic Training

Tutorial Eleven

runTimeModifiable true;

adjustTimeStep yes;

maxCo 0.4;

// *

* * * * * *//

2. Running simulation

>fluentMeshToFoam fineHex.msh

After converting the mesh, check the boundary file in the constant/polyMesh
directory and change the type and inGroups of boundary

frontAndBackPlanes from wall to empty (it is a 2D simulation).

>foamRun -solver multicomponentFluid

>foamToVTK

3. Post-processing

The simulation results at 120 s are as follows:

OpenFOAM® Basic Training

Tutorial Eleven

Simulation results after 120 s

Tutorial Twelve

snappyHexMesh – Single Region

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Twelve

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Philipp Schretter

• Yitong Chen

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Twelve

Background

In this tutorial, we will familiarize ourselves with the snappyHexMesh tool in
OpenFOAM®. This utility generates 3D meshes containing hexahedra and split-
hexahedra. We will also introduce different types of meshes with complex
geometries and compare the snappyHexMesh tool with other mesh generation
tools.

1. Meshes with complex geometries

So far we have only worked with meshes in Cartesian co-ordinates, however,
many engineering problems involve complex geometries that do not fit exactly
in Cartesian co-ordinates. In such cases, it would be much more advantageous
to work with grids that can handle curvature and geometric complexity more
naturally.

CFD methods for complex geometries are classified into two groups:

1. structured curvilinear grid arrangements

2. unstructured grid arrangements

In a structured grid arrangements:

• Cells center points are placed at the intersections of co-ordinates lines

• Cells have a fixed number of neighboring cells

• Cells center points can be mapped into a matrix based on their location
in the grid

• Structure and position in the matrix is given by indices (I, J in two
dimensions and I, J, K in three dimensions)

For the most complex geometries it may be necessary to sub-divide the flow
domain into several different blocks, where each mesh cell is a block, this is
known as block-structured grids. The next level of complexity is the
unstructured grids. It gives unlimited geometric flexibility, here the limitations
of structured grids do not apply – but at the cost of higher programming and
computational efforts. Unstructured grids also allow the most efficient use of
computing resources for complex flows, so this technique is now widely used
in industrial CFD.

2. Mesh generation tools

There are a number of advanced meshing tools available, both commercial and
free source. The major mesh generators are ANSYS GAMBIT®, ICEM, Salome,
snappyHexMesh and cfMesh. Here we will learn about GAMBIT®,
snappyHexMesh and cfMesh tools in detail.

2.1. GAMBIT®

GAMBIT® is a 3D unstructured tool, to specify the meshing scheme in it, two
parameters must be specified:

OpenFOAM® Basic Training

Tutorial Twelve

• Elements

• Type

The Elements parameter defines the shape(s) of the elements that are used to
mesh the object. The Type parameter defines the pattern of mesh elements on
the object. It has a single graphical user interface which brings geometry
creation and meshing together in one environment.

2.2. snappyHexMesh

In contrast to GAMBIT®, which incorporates both mesh generation and
refinement, the snappyHexMesh tool built within OpenFOAM® requires an
existing geometry base mesh to work with. The base mesh usually comes from
the blockMesh tool. This utility has the following key features:

• allow parallel execution to speed up the process

• supports geometry data from STL/OBJ files

• addition of internal and wall layers

• zonal meshing

The key steps involved when running snappyHexMesh are:

• Castellation: The cells which are beyond a region set by a predefined
point are deleted

• Snapping: Reconstructs the cells to move the edges from inside the
region to the required boundary

• Layering: Creates additional layers in the boundary region.

The advantages of snappyHexMesh over the other mesh generation tools are
as follows:

• No commercial software package is ultimately necessary. For the
meshing, the OpenFOAM® environment is sufficient and no further
software is necessary.

• The geometry can be created with any CAD program like CATIA®,
FreeCAD, etc. As the geometry is to be only surface data, the files need
to be in .stl, .nas or .obj. format.

• The meshing process can be run in parallel mode. If high computational
capabilities are available, high quality meshes can be generated in little
time.

2.3. cfMesh

cfMesh is an open-source library for mesh generation implemented within the
OpenFOAM® framework (like snappyHexMesh). Currently cfMesh is capable of
producing mesh of Cartesian type in both 2D and 3D, tetrahedral and
polyhedral types.

OpenFOAM® Basic Training

Tutorial Twelve

The fundamental work-flow of the tool starts from a mesh template, then
followed by a mesh modifier. The modifier allows for efficient parallelization
using shared memory parallelization (SMP) and distributed memory
parallelization using MPI.

OpenFOAM® Basic Training

Tutorial Twelve

snappyHexMesh – flange

Tutorial outline

The procedure described in this tutorial is structured in the following order:

• Creation of the geometry data

• Meshing a geometry with one single region

• Run an OpenFOAM® simulation with the generated mesh using
functions solver

Objectives

• The aim of the tutorial is to introduce single region meshing with the
meshing tool snappyHexMesh

• Understanding the advantages of snappyHexMesh

• Understanding the three basic steps of snappyHexMesh

Data processing

Import your simulation to ParaView and analyze the heat distribution in the
flange.

OpenFOAM® Basic Training

Tutorial Twelve

1. Pre-processing

1.1. Copying tutorial

Copy the following tutorial to your working directory.

$FOAM_TUTORIALS/mesh/snappyHexMesh/flange

Normally the .stl files are created using CAD software, such as CATIA® and
freeCAD. stl files contain information about the solid geometry. However, in this
tutorial the stl files are available to be copied from the OpenFOAM® tutorials
folder. To do this, copy the stl files from the below location to the
constant/geometry of your running case directory.

$FOAM_TUTORIALS/resources/geometry/flange.stl.gz

1.2. constant directory

The geometry folder in the constant directory contains the geometry files to be
meshed (stl, nas, obj). The files names is to be used as a reference in later
stages.

Note: The stl file should be in ascii format. All the stl files (different boundaries
stl files) should form a closed geometry together otherwise it is not possible to
differentiate between inside and outside of the geometry in the meshing
process.

1.3. system directory

For creating a mesh using snappyHexMesh, the following files should be
present in system directory:

- blockMeshDict: For meshing using snappyHexMesh a background
mesh is needed, which should surround the geometry surface (e.g. stl
file) file. The background mesh will be refined based on the settings in
the snappyHexMeshDict and the extra parts will be removed. Usually,
the background mesh is created using blockMesh. Here we define a
base mesh.

Note: To ensure that the sharp edges are refined properly, it is very important
to create perfect cube cells in the background mesh using blockMesh utility.

- decomposeParDict: The meshing using snappyHexMesh can be also
performed in parallel mode, in this case the parameters for distributed
processors are set in this file.

- meshQualityDict: Parameters to be checked for mesh quality and their
values are defined in this file (the default values are usually good).

- surfaceFeatureExtractDict: Using surfaceFeatures utility prior to
meshing with snappyHexMesh helps to extract the sharp edges and
have a better mesh with snappyHexMesh on these edges. All edges are
marked, whose adjacent surfaces normal are at an angle less than the
angle specified in includedAngle in the surfaceFeaturesDict. The

OpenFOAM® Basic Training

Tutorial Twelve

extracted edges are written to “*.extendedFeatureEdgeMesh” files in
constant/extendedFeatureEdgeMesh folder to be treated later in the
meshing process.

 // * * * * * * * **

* * * * * //

Surfaces (“flange.stl”);

includedAngle 150;

 // * * * * * * * **

* * * * * //

- snappyHexMeshDict: This file includes the settings for running the
snappyHexMesh. As mentioned in the Background section meshing
using this tool has three steps:

1) Castellating

2) Snapping

3) Layering

In the first section of this file, castellatedMesh, snap, addLayers can be set

to true or false depending on the stages required. In the following setting,
castellating and snapping are active and adding layers is deactivated (to
activate it, set the flag to true).

 // * * * * * * * **

* * * * * //

 castellatedMesh true;

 snap true;

 addLayers false;

 // * * * * * * * **

* * * * * //

The Geometry sub-dictionary lists all surfaces used by snappyHexMeshDict,

and assign them a name to be used as a reference.

It is also possible to specify regions in the domain that we want to treat them
specially later, e.g. in this case we try to define a spherical region to refine it.
The refined region is given an arbitrary name; in this case, it is refineHole,

which is a sphere with its center and radius defined.

// * * * * * * * **

* * * * //

geometry

{

 flange

 {

 type triSurfaceMesh;

 file “flange.stl”;

 }

 refineHole

{

 type searchableSphere;

 centre (0 0 -0.012);

 radius 0.003;

 }

};

 // * * * * * * * **

* * * * * //

1.3.1. CASTELLATING

OpenFOAM® Basic Training

Tutorial Twelve

In the castellating step based on the settings in the snappyHexMeshDict file,
the created background mesh (in this case using blockMesh) cells are cut into
sub-cells and the unneeded part of the mesh will be deleted (based on the
internal point defined by user). The background mesh is known as mesh “level
0”, by setting the “level” to 1 the background mesh at the position of features or
defined refinements will be cut into half in each direction (creating 8 sub-cells
for a 3D mesh). Therefor by each level of refinement number of cells increases
by factor 8!

Refinement level 0, level 1, level 2, level 3

The castellatedMeshControls sub-dictionary is used for user-defined mesh

refinement in the castellating step.

features allows refinement of the “*.extendedFeatureEdgeMesh” edges to a

certain level.

refinementSurfaces are for surface-based refinement. Every surface is

specified with two levels. The first level is the minimum level and the second
level is the maximum level of refinement. If the type of the surface is also
defined (e.g. patch or wall) the surface will be marked as a boundary with the
assigned name and type.

resolveFeatureAngle is an important setting. Edges, whose adjacent

surfaces normal are at an angle higher than the value set, are resolved. The
lower the value, the better the resolution at sharp edges.

refinementRegions: Volume based refinement of the regions defined in the

geometry section. In this tutorial the refinementHole region will be refined. In

the levels the first number (1E15) is the maximum number of the cells which can
be reached after refinement in this region and second number (3) is the level of
refinement

locationInMesh: Important coordinate for single region cases, to define which

part of the mesh should be kept, inside or outside the geometry.

 // * * * * * * * **

* * * * * //

castellatedMeshControls

{

 maxLocalCells 100000;

 maxGlobalCells 2000000;

 minRefinementCells 0;

 nCellsBetweenLevels 1;

 features

 (

 {

 file "flange.extendedFeatureEdgeMesh";

 level 0;

 }

OpenFOAM® Basic Training

Tutorial Twelve

);

 refinementSurfaces

 {

 flange

 {

 level (2 2);

 }

 }

 resolveFeatureAngle 30;

 refinementRegions

 {

 refineHole

 {

 mode inside;

 levels ((1E15 3));

 }

 locationInMesh (-9.23149e-05 -0.0025 -0.0025);

 allowFreeStandingZoneFaces true;

 }

 // * * * * * * * **

* * * * * //

Note: The locationInMesh point should never be on a face of the mesh, even

after refinement. It should always be inside a cell or the meshing will fail!

In the castellated step, the background mesh will be refined based on the
defined refinement levels at features, surfaces or regions and the unneeded
part of the mesh will be removed.

1.3.2. SNAPPING

Important parameters are number of mesh displacement iterations,
nSolveIter and the number of feature edge snapping iterations,

nFeatureSnapIter. The default values are fine for most of applications.

// * * * * * * * **

* * * * //

snapControls

{

 nSmoothPatch 3;

 tolerance 1.0;

 nSolveIter 300;

 nRelaxIter 5;

 nFeatureSnapIter 10;

 implicitFeatureSnap false;

 explicitFeatureSnap true;

 multiRegionFeatureSnap true;

}

// * * * * * * * **

* * * * //

1.3.3. LAYERING

The label for the layering is equal to the labeling of the Boundary surface in the
boundary file in the constant/polyMesh folder.

- nSurfaceLayers defines the number of surface layers

- expansionRatio defines the expansion ratio of the surface layers

- finalLayerThickness and minThickness define the min and the final

thickness of the surface layers

OpenFOAM® Basic Training

Tutorial Twelve

- nLayerIter: if not snapped smoothly enough, the max number of layer

addition iteration can be increased.

 // * * * * * * * **

* * * * * //

addLayersControls

{

 relativeSizes true;

 layers

 {

 “flange_.*”

 {

 nSurfaceLayers 3;

 }

 }

expansionRatio 1.005;

 finalLayerThickness 0.3;

 minThickness 0.25;

 nGrow 0;

 featureAngle 30;

 nRelaxIter 5;

 nSmoothSurfaceNormals 1;

 nSmoothNormals 3;

 nSmoothThickness 10;

 maxFaceThicknessRatio 0.5;

 maxThicknessToMedialRatio 0.3;

 minMedianAxisAngle 90;

 nBufferCellsNoExtrude 0;

nLayerIter 50;

nRelaxedIter 20;

}

meshQualityControls

{

 #include "meshQualityDict"

relaxed

{

 maxNonOrtho 75;

}

nSmoothScale 4;

 errorReduction 0.75;

}

writeFlags

(

 scalarLevels

 layerSets

 layerFields

);

mergeTolerance 1e-6;

 // * * * * * * * **

* * * * * //

Note: Only the relevant changes, which were used in the sample flange case,
are commented in the snappyHexMeshDict.

2. Running snappyHexMesh

The background mesh is created with the following command:

>blockMesh

According to the settings in the blockMeshDict, the mesh was created with 20
cells in x direction, 16 cells in y direction and with 12 cells in z direction.

OpenFOAM® Basic Training

Tutorial Twelve

Block mesh for flange

>surfaceFeatures

The command to mesh the flange geometry on one processor is

>snappyHexMesh

Note: The meshing process with snappyHexMesh can also be run in parallel.
To run the command on several processors, refer to Tutorial Eight for more
information.

The command snappyHexMesh creates a folder with the mesh files for each

mesh step. If, for example, in the snappyHexMeshDict, only castellatedMesh
is set to true and snap and addLayers are set to false, only one folder is created.
If also snap is set to true, 2 folders are created and if also addLayers is set to
true, 3 folders with 3 polyMesh folders are created. The folders are created
based on the deltaT settings in the controlDict File (in this case it is 1, therefore

folders are 1, 2 and 3).

Folders structure after running snappyHexMesh

OpenFOAM® Basic Training

Tutorial Twelve

In order to avoid the creation of these folders and only keep the final mesh (to
be written directly in the constant folder), the following command can be used
to overwrite the previous meshing steps. In this case, only one polyMesh folder
exits in the /constant directory.

Folders structure after using -overwrite flag

>snappyHexMesh –overwrite

However, sometimes it is useful to run snappyHexMesh without the overwrite
option, as it allows the user to make changes to a specific time step without
having to run all the other steps again, thus reducing computational time.

3. Examining the meshes

To examine, what each of the steps in the snappyHexMeshDict really does, we
need to turn off the overwrite feature in snappyHexMesh command and
generate VTK files to be opened in ParaView.

>foamToVTK

Simply change the time in Paraview to see the effect of snappyHexMesh steps
on the mesh, i.e. time 1 corresponds to the mesh after castellating step, time 2
for the mesh after snapping step, time 3 for the mesh after the layering step.

Flange mesh for step castellating with surface refinement level 2

OpenFOAM® Basic Training

Tutorial Twelve

Flange mesh for step castellating with surface refinement level 3

Flange mesh for step snap with surface refinement level 3

Flange mesh for step addlayers with surface refinement level 3

The slice views taken with ParaView from the center of the flange. The slices
are depicted by the red plain in the following figure:

OpenFOAM® Basic Training

Tutorial Twelve

Flange with sectional plain

You can review the mesh quality with the tool checkMesh.

>checkMesh

4. Running simulation

4.1. Copy tutorial

Now with the new mesh ready, let’s run some simulation on it! Here functions
solver is chosen for the simulation. To set up the case, copy the following
tutorial file into your working directory:

$FOAM_TUTORIALS/incompressibleFluid/pitzDailyScalarTransp

ort

The flange mesh files need to be transferred to the running case directory. To
achieve this, copy the polyMesh folder from the latest time step file of the flange
folder into the constant directory of the pitzDaily folder. If the overwrite function
is activated when running snappyHexMesh, copy the polyMesh folder from
constant directory of the flange folder.

4.2. Case set-up

The following changes need to be made to set up the case:

In the 0 directory:

Remove all the files, except p, T and U. Update the T file, so that the flange has
an initial temperature of 293K but is heated up from the inlet at 350K

dimensions [0 0 0 1 0 0 0];

internalField uniform 293;

boundaryField

{

 flange_patch1

OpenFOAM® Basic Training

Tutorial Twelve

 {

 type fixedValue;

 value uniform 350;

 }

 flange_patch2

 {

 type fixedValue;

 value uniform 293;

 }

 flange_patch3

 {

 type fixedValue;

 value uniform 293;

 }

 flange_patch4

 {

 type fixedValue;

 value uniform 350;

 }

}

Update the U and p files so that the velocity in the entire flange domain and at
the boundaries is zero.

Note: to set the initial fields to zero, remove the nonuniform filed and it values
and replace it with uniform field value, e.g. uniform (0 0 0).

In the constant directory

In the momentumTransport file, set the simulationType to laminar.

In the system directory

Update the controlDict file in the system directory by changing the endTime to

0.0005, deltaT to 0.000001 and writeInterval to 100.

4.3. Running solver

Run the solver with the command

>foamRun -solver functions

4.4. Results

Convert the results to VTK files with

>foamToVTK

OpenFOAM® Basic Training

Tutorial Twelve

0.00001s 0.00002s 0.00003s

 0.00004s 0.00005s

Heating of the flange from 0.01 to 0.05s

Tutorial Thirteen

snappyHexMesh – Multi-Region

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Thirteen

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Philipp Schretter

• Yitong Chen

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Thirteen

Background

Multi-region modeling is a computational approach used in CFD simulations
where the entire computational domain is divided into distinct regions, each
representing a specific phase or material. This method is particularly useful for
simulating conjugate heat transfer (CHT), fluid-structure interactions, and
multiphase flow scenarios.

The key advantage of multi-region modeling is that it allows for separate
governing transport equations to be solved for each region, ensuring accurate
representation of different physical properties, material behaviors, and
interactions at the interfaces.

Multi-region modeling is essential in cases where:

• Different materials with varying thermal properties exist (e.g., heat
exchangers, cooling of electronic components, and thermal insulation
studies).

• Conjugate heat transfer (CHT) needs to be modeled, where heat
conduction through solids and convection in fluids occur simultaneously.

• Interfaces between different phases or substances are present (e.g.,
solid-liquid).

• Fluid-structure interaction (FSI) must be considered in simulations,
where structural deformation affects the surrounding fluid flow.

• Energy transfer in coupled systems requires resolving different
governing equations in separate domains.

Approaches to Multi-Region Modeling

Historically, two primary approaches have been used to solve multi-region
problems:

1. Monolithic Approach

A single coupled matrix equation system is used to solve all regions
simultaneously. Requires a strong coupling of governing equations across
different regions and ensures better numerical stability but is computationally
expensive. Typically used in high-accuracy simulations such as finite element-
based methods.

2. Partitioned Approach (Used in OpenFOAM®)

Each region is treated as an independent subdomain, with separate governing
equations solved for each. Interface conditions between regions are explicitly
enforced via boundary conditions and it is computationally more efficient than

OpenFOAM® Basic Training

Tutorial Thirteen

the monolithic approach. It is used in scenarios where different physics must
be solved separately but interact at interfaces.

Steps for Multi-Region Modeling in OpenFOAM®

Step 1: Define the Computational Domain & Mesh Regions

The entire simulation domain is divided into multiple regions, typically a
combination of fluid and solid domains. Each region is assigned specific
material properties, such as: density, viscosity, thermal conductivity and
specific heat capacity for fluids and thermal conductivity, heat capacity, and
density for solids. The mesh is generated separately for each region using tools
like blockMesh, snappyHexMesh, or external meshing software.

Step 2: Assign Field Variables for Each Region

Each region requires separate field definitions, such as temperature (T),
velocity (U), and pressure (p). Thermophysical properties for each region are
defined using thermophysicalModels and initial conditions for each region must
be assigned in the 0 directory.

Step 3: Solve Transport Equations in Each Region

The governing equations for mass, momentum, and energy are solved for each
individual region. For fluid regions, Navier-Stokes, continuity and energy
equations equations are solved while in the solid region’s equations such as
Fourier heat conduction equation for temperature distribution are normally
considred. Time-stepping is based on the smallest time-step for all the regions
and numerical schemes are managed separately for each region.

Step 4: Multi-Regional Coupling at Interfaces

The interaction between different regions is enforced at interfaces by specifying
boundary conditions. The interface conditions can be temperature continuity
(matching temperature at the interface) and heat flux continuity (ensuring
conservation of energy transfer).

Step 5: Iterative Solution for Fully Coupled Results

The solver iterates between individual region solutions until convergence is
achieved. Adjustments to time-stepping, solver settings, and relaxation factors
may be needed for numerical stability.

OpenFOAM® Basic Training

Tutorial Thirteen

snappyHexMesh - snappyMultiRegionHeater

Tutorial outline

Try to create a multi-region geometry and mesh and run a conjugate heat
transfer case using it.

Objectives

• Understanding multi region meshing with the meshing tool
snappyHexMesh

Data processing

Import your simulation to ParaView. Analyze the flow field through the flange
and the heat distribution in the flange.

OpenFOAM® Basic Training

Tutorial Thirteen

1. Pre-processing

1.1. Copying tutorial

Download the following tutorial to your working directory:

https://github.com/OpenFOAM/OpenFOAM-

5.x/tree/master/tutorials/heatTransfer/chtMultiRegionFoam/snappyMultiRegionHeater

Either by creating the folders and then downloading the files and place them in
relevant folders or using following webpage:

https://download-directory.github.io/

Rename the constant/triSurface directory to constant/geometry directory. In the
system directory, change the name of surfaceFeatureExtractDict to
surfaceFeaturesDict.

1.2. 0 directory

Unlike the single region simulations in the 0 directory an individual folder per
region exist which stores the files including initial and boundary conditions for
that region (the folders can be created manually or will be generated
automatically after creating and splitting the mesh). Also in the 0 directory some
files exists which are just dummy files that will not be used in the simulations.
The initial and boundary conditions for each region are changed and updated
using the changeDictionary utility, which will be explained later.

1.3. constant directory

Also in the constant directory exist a folder per region; in this case, the domain
is split into the following regions: bottom air, heater, left solid, right solid and top
air. Within the designated folder, there are relevant dictionaries that describe
the physical properties, turbulence or radiation behavior of each region, e.g.
radiationProperties, momentumTransport and physicalProperties. The
following changes should be applied (these changes are required, since the
original tutorial belongs to OpenFOAM 5):

• In the bottomAir rename thermoPhysicalProperties file to
physicalProperties

• In the bottomAir rename turbulenceProperties file to
momentumTransport

• Copy the physicalProperties, momentumTransport and g file from
bottomAir to topAir folder

• Update the thermoPhysicalProperties file in the constant/heater folder
as following

// * //

thermoType

{

 type heSolidThermo;

 mixture pureMixture;

https://github.com/OpenFOAM/OpenFOAM-5.x/tree/master/tutorials/heatTransfer/chtMultiRegionFoam/snappyMultiRegionHeater
https://github.com/OpenFOAM/OpenFOAM-5.x/tree/master/tutorials/heatTransfer/chtMultiRegionFoam/snappyMultiRegionHeater
https://download-directory.github.io/

OpenFOAM® Basic Training

Tutorial Thirteen

 transport constIsoSolid;

 thermo eConst;

 equationOfState rhoConst;

 specie specie;

 energy sensibleInternalEnergy;

}

mixture

{

 specie

 {

 molWeight 12;

 }

 transport

 {

 kappa 80;

 }

 thermodynamics

 {

 Hf 0;

 Cv 450;

 }

 equationOfState

 {

 rho 8000;

 }

}

// *** //

• Copy the thermoPhysicalProperties file from constant/heater folder to
constant/leftSolid and constant/rightSolid and replace the old files

The polyMesh directory in the constant folder (after the mesh is created)
includes the original mesh while the polyMesh directories in each region folder
(after the mesh is splitted) include the split mesh for that region with the new
boundaries between regions.

Unlike polyMesh directories there exist just one geometry folder which stores
all the stl files for mesh creation using snappyHexMesh.

In the regionProperties file, the physical phase of each region is specified. As
you can see, bottom and top air regions are fluid, whereas heater, left and right
solid are in solid phase.

// *

* * * * * *//

regions

(

 fluid (bottomAir topAir)

 solid (heater leftSolid rightSolid)

);

// *

* * * * * *//

1.4. system directory

Like constant directory also in system directory, a folder per region can be found
and all the settings for that region are stored in the corresponding folder, e.g.
fvSolution, fvSchemes and decomposeParDict. The fvSchemes file in the
system directory is a dummy file while the fvSolution includes the number of

OpenFOAM® Basic Training

Tutorial Thirteen

outer correctors setting for PIMPLE algorithm. There is also just one controlDict
file and it is in main system folder.

Note: For running the simulations in parallel, the decomposeParDict files for all
the regions should have the same settings as the main one in the system
directory. This is not valid for parallel meshing using snappyHexMesh while it
just uses the decomposeParDict file in the main system directory.

Update the surfaceFeaturesDict file as following:

// * //

surfaces ("bottomAir.stl" "heater.stl" "leftSolid.stl" "rightSolid.stl"

"topAir.stl");

includedAngle 150;

writeFeatureEdgeMesh yes;

// *** //

Change the meshQualityDict as following:

// * //

// Include defaults parameters from master dictionary

#includeEtc "caseDicts/mesh/generation/meshQualityDict"

// *** //

The files needed for creating a multi-region mesh are the same as the mesh for
single-region, except for slight differences in snappyHexMeshDict file:

locationInMesh: In a multi-region mesh this point is not used but it should be

defined just as a place holder.

refinementSurfaces: Different regions are defined here. E.g. for the region

BottomAir all the faces and cells inside the bottomAir.stl (each region stl should
be a closed volume) file are marked with bottomAir flag (in faceZone and

cellZone).

// *

* * * *//

castellatedMeshControls

{

 maxLocalCells 100000;

 maxGlobalCells 2000000;

 minRefinementCells 10;

 nCellsBetweenLevels 2;

 features

 (

 {

 file "bottomAir.eMesh";

 level 1;

 }

…

 {

 file "topAir.eMesh";

 level 1;

 }

);

 refinementSurfaces

 {

 bottomAir

 {

 level (1 1);

 faceZone bottomAir;

OpenFOAM® Basic Training

Tutorial Thirteen

 cellZone bottomAir;

 cellZoneInside inside;

 }

…

 rightSolid

 {

 level (1 1);

 faceZone rightSolid;

 cellZone rightSolid;

 cellZoneInside inside;

 }

 }

 resolveFeatureAngle 30;

 refinementRegions

 {

 }

 locationInMesh (0.01 0.01 0.01);

 allowFreeStandingZoneFaces false;

}

// *

* * * *//

After creation of the mesh and splitting to different regions, the initial and
boundary conditions for each region can be manually set in the relevant region
folders in 0 directory. This process can be also automated using the
changeDictionary utility. The dictionary file for this utility for each region is in the
relevant region folder in the system directory: changeDictionaryDict.

See below the changeDictionaryDict file for the heater region. In the boundary

sub-dictionary type of boundaries for minY, MinZ and maxZ are set to patch.

Then for T the internal field will be overwritten with uniform 300. In the next

step all the boundaries in the T file for heater region will be set to zeroGradient

(“.*” means all the boundaries with any name) and after that the bounadries

with the name “heater_to_.*” will be changed to

turbulentTemperatureCoupledBaffleMixed and minY will be changed to

fixedValue.

 // *

* * * * *//

boundary

{

minY

{

 type patch;

}

minZ

{

 type patch;

}

maxZ

{

 type patch;

}

}

T

{

internalField uniform 300;

boundaryField

{

 “.*”

 {

OpenFOAM® Basic Training

Tutorial Thirteen

 type zeroGradient;

 value uniform 300;

 }

“heater_to_.*”

{

 type compressible::turbulentTemperatureCoupledBaffleMixed;

 Tnbr T;

 knappaMethod solidThermo;

 value uniform 300;

}

minY

{

 type fixedValue;

 value uniform 500;

}

}

 }

 // *

* * * * *//

In the meshQualityDict file, change the following line:

#includeEtc “caseDicts/meshQualityDict”

to

#includeEtc “caseDicts/mesh/generation/meshQualityDict.cfg”

Note: Add the missing “;” to the fvSolution files for bottomAir and topAir regions:

“(rho|rhoFinal)”

{

 solver PCG;

 preconditioner DIC;

 tolerance 1e-7;

 relTol 0;

}

Update the laplacianSchemes in the the system/heater/fvSchemes file as
following:

laplacianSchemes

{

 default Gauss linear corrected;

 laplacian(alpha,h) Gauss linear corrected;

}

In the system/heater/fvSolution change the h, $h and hFinal to e, $e and eFinal.

Copy and replace the fvScheme and fvSolution files from system/leftSolid and
system/rightSolid with the ones from system/heater

Copy fvSchemes and fvSolution from bottomAir to topAir (replace the files)

2. Mesh creation and running simulation

The background mesh is created with blockMesh.

>blockMesh

Equal to the single region case, the command surfaceFeatures creates the

eMesh files from the stl files with the geometry data. Also the folder
extendedFeatureEdgeMesh is created in the constant directory. The creation
of eMesh files with the command surfaceFeatures is not obligatory. This step

is only necessary, if certain edges need to be refined.

OpenFOAM® Basic Training

Tutorial Thirteen

>surfaceFeatures

For performing the meshing in parallel, the geometry needs to be decomposed
prior to running snappyHexMesh. Depending on the number of subdomains,
defined in the decomposeParDict, the processor folders are created
accordingly.

>decomposePar

Note: It is recommended, not to use the scotch method to decompose the
region. Rather, the hierarchical or the simple method should be used. In case
of scotch method, errors can occur while executing snappyHexMesh or while
reconstructing the mesh.

In order to prevent the creation of the folders 1, 2 (castellation and snapping
features are turned on while layering is turned off) and only keep the final time
step folder with the final mesh, the command -overwrite can be added after
snappyHexMesh. In this case, only one folder, 0, is created with the files
pointLevel and cellLevel. The mesh data in this case is located in
constant/polyMesh.

>mpirun -np 4 snappyHexMesh -parallel -overwrite

Note: If castellatedMesh and snap are set on true in the snappyHexMeshDict,
only the snapped mesh is stored, whereas the intermediate step
castellatedMesh is overwritten. If castellatedMesh, snap and addLayers are set
on true in the snappyHexMeshDict, only the layered mesh is stored and the
previous intermediate steps castellatedMesh and snap are overwritten.

In this case, only the steps castellatedMesh and snap are set to true, as these
steps are applied to the whole mesh. The following command reconstructs the
final mesh:

>reconstructPar –constant

After this step, all the regions are meshed but the meshes are connected and
needs to be split. In the meshing step each region cells are marked with a flag
and this flag will be used in the next step to split the mesh. Mesh regions can
be split using the following command which split the mesh based on the flagged
cellZones and overwrite the old meshes in the polyMesh directories in the
region folders (if any exist):

>splitMeshRegions -cellZones -overwrite

With the mesh ready, the next step is to apply appropriate field values to each
region, according to the changeDictionaryDict. This command needs to be
repeated for each region, with the name of the region specified after the prefix
‘–region’.

>changeDictionary –region heater

>changeDictionary –region topAir

OpenFOAM® Basic Training

Tutorial Thirteen

>changeDictionary –region bottomAir

>changeDictionary –region rightSolid

>changeDictionary –region leftSolid

Before running the simulations, the solver for each region needs to be defined,
in the controlDict file add the following lines:

regionSolvers

{

 bottomAir fluid;

 topAir fluid;

 heater solid;

 leftSolid solid;

 rightSolid solid;

}

and also remove the rho files from 0/topAir and 0/bottomAir folders, now it is
ready to be run.

>foamMultiRun

Note: foamMultiRun can also be run on several processors.

3. Post-processing

The results need to be converted to VTK files for each region with flag -region.

>foamToVTK –region heater

>foamToVTK –region topAir

Temperature profile of heater region at time 15s and 75s

OpenFOAM® Basic Training

Tutorial Thirteen

Temperature profile of entire mesh at time 15s and 75s

Tutorial Fourteen

Sampling

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Fourteen

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Benjamin Piribauer

• Yitong Chen

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Fourteen

Background

1. Importance of Sampling in CFD Simulations

In computational fluid dynamics, it is crucial to analyze simulation results
effectively to ensure accurate predictions and correct numerical behavior.
Sampling provides:

• Enhanced Debugging: Identifying issues such as unexpected flow
behaviors, numerical instability, or divergence at an early stage.

• Real-time Monitoring: Observing the evolution of flow variables without
waiting for the simulation to finish.

• Efficient Data Management: Extracting only necessary data instead of
storing large amounts of full-domain output, thereby reducing storage
requirements.

• Post-processing Flexibility: Enabling in-depth analysis and visualization
of selected flow regions using external tools such as ParaView .

2. Sampling in OpenFOAM®

This tutorial serves as a introduction to the sampling utility available in
OpenFOAM®. The sampling utility is a powerful feature that allows users to
extract data from specific surfaces or points within a simulation domain. This
extracted data can then be analyzed to understand the behavior of the
simulated flow, validate numerical results, or visualize specific regions of
interest.

Sampling in OpenFOAM® can be performed in two primary ways:

• Post-processing sampling – Data is extracted after the simulation has
completed.

• In-situ sampling – Data is collected during the simulation runtime,
allowing for real-time monitoring and debugging.

By using the sampling utility, users can examine critical parameters such as
velocity, pressure, turbulence properties, and other field variables at selected
locations, which help in gaining insights into the correctness and stability of the
numerical solution.

OpenFOAM® Basic Training

Tutorial Fourteen

fluid – shockTube

Tutorial outline

Simulate the flow along a shock tube for 0.007 s and use OpenFOAM® sampling
utility for extracting the data along a line during the simulation and after the
simulation.

Objectives

• Understand the function of sampling and how to use the sampling utility

Data processing

Import your simulation to ParaView to visualize it and analyze the extracted
data with sampling tool.

OpenFOAM® Basic Training

Tutorial Fourteen

1. Pre-processing

1.1. Copying tutorial

To test the sampling feature, we will use the shockTube tutorial covered in
Tutorial Three and extract data over a line between (-5 0 0) and (5 0 0).

$FOAM_TUTORIALS/compressible/fluid/shockTube

1.2. system directory

1.2.1. sample dictionary

The sample file can be found in the system directory.

// *

* * * * * *//

type sets;

libs (“libsampling.so”)

interpolationScheme cellPoint;

setFormat raw;

sets

(

 data

 {

 type lineUniform;

 axis x;

 start (-4.995 0 0);

 end (4.995 0 0);

 nPoints 1000;

}

);

fields (T mag(U) p);

// *

* * * * * *//

In the type the type of data to be sampled is defined, e.g. sets or surfaces.

The different options for interpolationScheme and setFormat will be

discussed in a later section.

In the sets sub-dictionary each set of data should be given a name, which is

freely chosen by the user, in this case the name is simply ‘data’. In the bracket

for the set of data, we need to specify the following criteria:

- type: specifies the method of sampling. Here uniform was chosen to

make a sample on a line with equally distributed number of points.

- axis: to define how the point coordinates are written. In this case, x

means that only the x coordinate for each point will be written.

- Start/end: the endpoints of the line-sample are defined

- nPoints: number of points on our line

Outside of the data and sets bracket in the fields we have to define which

fields we want to sample.

OpenFOAM® Basic Training

Tutorial Fourteen

1.2.2. controlDict

To have the option to sample for each time step instead of each write-interval
or sampling while the solver is running; instead of the sample dictionary
additions in the functions file (it can be also integrated into the controlDict) are
needed.

In this part one will change the functions file of the shockTube tutorial so that
our line- sampling from before will be executed while running, and per time step.

Modify the functions file as following:

// *

* * * * * *//

…

functions

{

 #includeFunc mag(U)

 linesample

 {

 type sets;

 functionObjectLibs (“libsampling.so”);

 writeControl timeStep;

 outputInterval 1;

 interpolationScheme cellPoint;

 setFormat raw;

 sets

 (

 data

 {

 type lineUniform;

 axis x;

 start (-4.995 0 0);

 end (4.995 0 0);

 nPoints 1000;

 }

);

fields (T mag(U) p);

}

}

// *

* * * * * *//

linesample sub-dictionary includes the settings for the sampling tool. Any

arbitrary name can be chosen instead of linesample. The chosen name will

be the name of the folder in the postProcessing directory after running the
solver.

Inside our linesample sub-dictionary:

- type: sets or surfaces can be chosen. More types will be covered in a

later section.

- functionObjectLibs: provides the operations needed for the sampling

tasks.

- writeControl: specifies the intervals in which sampling data should be

collected in the case of timeStep, depending on the outputInterval,

sampling data will get saved in dependence of the timeStep. In the case

OpenFOAM® Basic Training

Tutorial Fourteen

of outputInterval being equal to 1, every time step, sampling data will

be saved. Changing the interval to 2 means that data will be saved every
2 time steps.

2. Running simulation

To run the Tutorial go to your case directory in the terminal and use the following
commands:

>blockMesh

>setFields

>foamRun -solver fluid

3. Post-processing

After fluid solver finishes running, based on your sampling approach the
following steps should be performed:

3.1. sample dictionary

It is also possible to use the sample command to extract your sample-data.

>postProcess –func sample

A new folder will appear in your case directory named postProcessing and in it
a folder named sample. In this folder all the sampling data will be stored in
separate folders for each write-interval.

The postProcessing directory and all its subdirectories have been generated
after the first time step. Now it can be seen that for every time step a folder is
generated instead of only every write interval.

Extracted data using sampling tool after 0.007 s

OpenFOAM® Basic Training

Tutorial Fourteen

4. Types of sampling

There are 2 main types of sampling. The sets type, which was used in our
example above, and the surfaces type.

In the sets type of sampling different kinds of point samplings, like the line
sampling we used before, or some kind of cloud sampling are included. In the
surface type whole surfaces are sampled, like near a patch, or on a plane
defined by a point and a normal vector.

Let us discuss the similarities between the set and surface types. If the
sampling happens in the controlDict the 4 entries discussed in the controlDict
section of this tutorial need to be included for both types. On top of that, both
types need an interpolation scheme. Here only two of the schemes: cell and
cellPoint will be discussed. The cell scheme assumes that the cell centre

value as constant in the whole cell. The cellPoint scheme will carry out linear

interpolation between the cell centre and vertex values. Lastly, the field bracket
looks the same for both cases.

4.1. sets

All sets need a setFormat, for example csv, which needs to be included after

the interpolationScheme.

After that the sets sub-dictionary begins where a bracket with an arbitrary name
begins in which the sets sampling type and the geometrical location of the
sampling points will be chosen. In the following, a few of sampling types will be
discussed.

4.1.1. lineUniform

This one was used in the above example. A line from a start point to an end
point with a fixed number of points evenly distributed along it.

axis determines what is written for the point coordinate in the output file.

distance means it will only write the distance between sampled point and start

point in the file.

lineX1

 {

 type lineUniform;

 axis distance;

 start (0.0201 0.05101 0.00501);

 end (0.0601 0.05101 0.00501);

 nPoints 10;

}

4.1.2. face

This type also samples along a line from a defined start to endpoint, but only
writes in the log file for every face the line cuts.

lineX2

 {

 type face;

 axis x;

 start (0.0001 0.0525 0.00501);

 end (0.0999 0.0525 0.00501);

OpenFOAM® Basic Training

Tutorial Fourteen

}

4.1.3. cloud

The cloud type samples data at specific points defined in the point’s bracket.

somePoints

 {

 type cloud;

 axis xyz;

 points ((0.049 0.049 0.00501)(0.051 0.049 0.00501));

}

4.1.4. patchSeed

The patchSeed sampling type is used for sampling patches of the type wall.

One can for example sample the surface adsorption on a wall with this type.

patchSeed

 {

 type patchSeed;

 axis xyz;

 patches (".*Wall.*");

 maxPoints 100;

}

Please note that for patches only a patch of type wall can be used. If you choose
a wrong type, nothing will be sampled and you receive no error message.

4.2. surfaces

All surfaces need a surfaceFormat specified. Practical formats would be the

vtk format, which can be opened with paraview, and the raw format, which can
be used for gnuplots. Instead of the sets bracket now a surfaces bracket must

be used and the type is of course surfaces. Inside the surfaces brackets one

can now sample an arbitrary number of surfaces, each in its own inner brackets.
The different types of surface sampling like the plane in the example below will

be discussed in the next sections.

 type surfaces;

 interpolationScheme cellPoint;

 surfaceFormat vtk;

 fields

 (

 U

);

 surfaces

 (

 yoursurfacename

 {

 type plane;

 basePoint (0.1 0.1 0.1);

 normalVector (0.1 0 0);

 triangulate false;

 }

);

4.2.1. plane

The type plane creates a flat plane with an origin in the basePoint normal to

the normalVector. This normalvector starts in the origin, not in the

OpenFOAM® Basic Training

Tutorial Fourteen

basePoint. To turn the triangulation of the surface off one has to add

triangulate false.

constantPlane

 {

 type plane; // always triangulated

 basePoint (0.0501 0.0501 0.005);

 normalVector (0.1 0.1 1);

 //- Optional: restrict to a particular zone

 // zone zone1;

 //- Optional: do not triangulate (only for surfaceFormats that support

 // polygons)

 //triangulate false;

 //interpolate true;

 }

One can also set a new origin for the basePoint and normalVector with

coordinateSystem

 {

 origin (0.0501 0.0501 0.005);

 }

4.2.2. patch

A sampling of type patch can sample data on a whole patch. Please note that

while the syntax looks the same as in the patchSeed case, also patches that

are not of type wall work. Default option will triangulate the surface; this can be
turned off with triangulate false.

walls_interpolated

 {

 type patch;

 patches (".*Wall.*");

 //interpolate true;

 // Optional: whether to leave as faces (=default) or triangulate

 // triangulate false;

 }

4.2.3. patchInternalField

Similar to the patch type, this type needs a patch on which it samples. It will

sample data that’s a certain distance away in normal direction (offsetMode

normal). There is also the option to define the distance in other ways seen in

the commented section of the code.

Note: While the sampling happens not on the patch but a distance away from
it, the geometric position of the sampled values in the output file will be written
as the position of the patch.

Once again the default triangulation can be turned off with triangulate false.

nearWalls_interpolated

 {

 // Sample cell values off patch.

 // Does not need to be the near-wall

 // cell, can be arbitrarily far away.

 type patchInternalField;

 patches (".*Wall.*");

 interpolate true;

 // Optional: specify how to obtain

 // sampling points from the patch

OpenFOAM® Basic Training

Tutorial Fourteen

 // face centres (default is 'normal')

 //

 // //- Specify distance to

 // offset in normal direction

 offsetMode normal;

 distance 0.1;

 //

 // //- Specify single uniform offset

 // offsetMode uniform;

 // offset (0 0 0.0001);

 //

 // //- Specify offset per patch face

 // offsetMode nonuniform;

 // offsets ((0 0 0.0001) (0 0 0.0002));

 // Optional: whether to leave

 // as faces (=default) or triangulate

 // triangulate false;

 }

4.2.4. triSurfaceSampling

With the triSurfaceSampling type data can be sampled in planes which are

provided as a trisurface stl file. To create such a file one can use the command
below. The command will generate a .stl file of one (or more) of your patches.

>surfaceMeshTriangulate name.stl -patches "(yourpatch)"

Here your patch needs to be replaced with the name of one of your patches
defined in the constant/polyMesh/boundary file. Starting the command without
the patches option will generate a stl file of your whole mesh boundary. Next
make a directory in the constant folder named triSurface if it does not already
exist and copy the .stl file there. In the code, you now have to specify your stl
file as the surface. For the source, the use of boundaryFaces seems to be a

good option of the stl file is one of your patches.

triSurfaceSampling

 {

 // Sampling on triSurface

 type sampledTriSurfaceMesh;

 surface integrationPlane.stl;

 source boundaryFaces;

 // What to sample: cells (nearest cell)

 // insideCells (only triangles inside cell)

 // boundaryFaces (nearest boundary face)

 interpolate true;

 }

Note: Most CAD software can export the surface of 3D drawings as stl files.

4.2.5. isoSurface

The isoSurface sampling type is quite different to what was discussed before

in this tutorial. Until now, all the sampling types had a constant position in space
and changing field values at that position were extracted. With the isoSurface

sampling, one tracks the position of a defined value in space. The example
below can be copied into the shocktube tutorials sample file (of course, it needs
all the other options needed for surface type sampling).

Using vtk for the surfaceFormat one can visualize the moving shockwave in

space. Note that both the vtk of the sampling and the whole shocktube case
can be opened together in paraview to compare the results.

OpenFOAM® Basic Training

Tutorial Fourteen

Note that the isoField needs to be a scalarfield.

interpolatedIso

 {

 // Iso surface for interpolated values only

 type isoSurface;

 // always triangulated

 isoField p;

 isoValue 9e4;

 interpolate true;

 //zone ABC;

 // Optional: zone only

 //exposedPatchName fixedWalls;

 // Optional: zone only

 // regularise false;

 // Optional: do not simplify

 // mergeTol 1e-10;

 // Optional: fraction of mesh bounding box

 // to merge points (default=1e-6)

 }

4.2.6. isoSurfaceCell

The isoSurfaceCell type is very similar to the one we discussed before, but

this one does not cross any cell with its surface and does not interpolate values.

constantIso

 {

 // Iso surface for constant values.

 // Triangles guaranteed not to cross cells.

 type isoSurfaceCell;

 // always triangulated

 isoField rho;

 isoValue 0.5;

 interpolate false;

 regularise false;

 // do not simplify

 // mergeTol 1e-10;

 // Optional: fraction of mesh bounding box

 // to merge points (default=1e-6)

 }

Appendix A

Linux Commands

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Appendix A

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Appendix A

cat, more, less

File viewer with pure read function - in order of ease of operation. In less with
pagedown/pageup you can navigate within the file, with / and ? can look for
strings, q can be used for closing less. cat is back for universally available on
Unix.

cd, cd ..

Changing the directory, cd .. goes one directory up and cd ~ moves to home
directory. Important to note is the space between cd and .. as opposed to DOS!

cp, cp -r

Copying files or entire directory trees (with -r option). Caution: There is no
warning or prompt when overwriting existing files! The important thing is that a
target has to be always given, at least one . which means, copy to the current
directory.

ctrl+r Reverse search, for searching an already typed command in a terminal window.

du, du -s,

du -k

Calculates the amount of space consumed in a directory. For safety reasons you
should use the -k option (output in kilobytes), since some systems provide the
space in blocks that include only 512 bytes ...

exit Closing connection (terminal window).

gedit Text editor with graphical user interface. When working with gedit some
temporary files (originalFileName~) are created, they can be deleted after
saving.

grep Search command for plain-text data sets for lines matching a regular expression.

gzip, gunzip

Compression/decompression program for individual files (as opposed to
zip/unzip, this can also work on directories or file lists). The great advantage of
gzip: Fluent® and OpenFOAM® are able to read and write gz files directly, which
saves about 30-90% space.

kill, kill -9

Stopping processes. For this the process ID is required, which can be found with
top or ps. The Exit is irrevocable course - but you cannot shoot processes, if
you are not the "owner".

ls, ls –la

Lists the contents of a directory, with option -la also hidden files are displayed,
as well as the file size and characteristics.

mc Program that enables navigation in the text window, esc-keys, may be
necessary: mc -c, for navigating through mc use function keys or esc+[number]
combination, e.g. F9 or esc+9 for moving to the menus at the top.

OpenFOAM® Basic Training

Appendix A

mkdir

Creates a new directory.

mv Moving or renaming files and directories. Caution: There is no prompt when
overwriting existing files!

Nano, pico The command to run the nano text editor, a terminal based text editor.

passwd

The command to change the login password.

| It is known as pipe and is used for merging two commands, redirecting one
command as input to another, e.g. less|grep searches a specified word in the
output of file opened with less.

ps, ps –A

ps waux

Lists all the processes that were started in the respective command window with
the options are all running processes on the system display.

pwd

Shows the current working directory.

rm, CAUTION:
rm -fr

Deletes files. The option -r will also remove directories and files recursively and
delete directories, f (force) prevents any further inquiry. - Incorrectly applied, this
command can lead to irreversible loss of all (private) data. There is no undelete
or undo!

rmdir

Deletes an empty directory.

scp

The copy command over the network - as secure FTP replacement. Also
dominates the -r (recursive) option. Usage: scp source file destination file with
source and the destination format can be USERNAME@
COMPUTER.DOMAIN:PATH/TO/FILE. Source or target can of course also be
created locally, then (your) user name and computer are not required.

ssh

Telnet replacement with encryption. On Windows, for example, implemented
with putty.

tail, tail -f

File viewer, the default outputs the last 10 lines of a file. With option -n XX can
spend the last XX lines, with the -f option, the command is running from those
lines, which are attached to a file. The command is therefore perfect for watching
log files.

OpenFOAM® Basic Training

Appendix A

top Displays a constantly updated list of all running processes, with process ID,
memory and CPU usage. For processes of one user top [username] should be
used, and for quitting q or ctrl+c should be applied.

vi, vim File editor. For forward searching use /, for backward searching use ?. For
exiting esc+:x. nano or pico are recommended for beginners, which are easier
to handle.

Appendix B

Running OpenFOAM®

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Appendix B

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Sylvia Zibuschka

• Yitong Chen

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Appendix B

1. Running OpenFOAM® on a Local Linux PC (or virtual machine):

• Open a terminal

• Go to the OpenFOAM® installation directory (e.g. /opt/openfoam10) in
the opened terminal

• Change to the etc directory in the OpenFOAM® installation directory

• Run the following command:

>. ./bashrc

• If a new terminal is opened, the same procedure should be repeated in
that in order to activate OpenFOAM® in here.

2. Running OpenFOAM® on Remote Computers via SSH (e.g. server):

2.1. Windows:

• Run PuTTY (search for: PuTTY windows).

• Set the following:

Category>Session

Host name: openhost.university.edu

Connection type: SSH

Category>Connection>SSH>Tunnels

Source port: 5901

Destination: localhost:59**1

• Do not forget to press Add!

Please make sure that display is not used by others.

Category>Connection>Data

Auto-login username: openFoamUser2

Category>Session

Saved Sessions: openFoamUser

• Press Save.

• Now choose from “saved sessions” your session (openFoamUser) and
press Open. In the opened Command (Prompt) window, it prompts for

1 Display number

2 Session ID

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

OpenFOAM® Basic Training

Appendix B

your password. The password is not echoed to the screen and the
passwords are case sensitive.

• Immediately after entering your password, your computer will attempt to
establish a connection to your server. If it is your first time connecting to
that server, you will see a message asking you to confirm the identity of
the machine. Make sure you entered the address properly, and type
yes, followed by the return key, to proceed.

• Change to etc directory in OpenFOAM® installation directory

• Execute the following command:

>. ./bashrc

• To log out use whatever command is used to logout from the server you
are logged into (typically ctrl + d).

2.2. Mac OS X and Linux:

• Open your Terminal application. You will see a window with a $ or >
symbol and a blinking cursor. From here, you may issue the following
command to establish the SSH connection to your server (be careful
about upper case ‘L’ in the -gL).

>ssh -gL 5901:localhost:59** openFoamUser@university.edu

• Immediately after issuing this command, your computer will attempt to
establish a connection to your server. If it is your first time connecting to
that server, you will see a message asking you to confirm the identity of
the machine. Make sure you have entered the address properly, and
type yes, followed by the return key, to proceed.

• You will then be prompted to enter your password. Type or copy/paste
your SSH user password into the Terminal. You will not see the cursor
moving while entering your password. This is normal. Once you are
finished inputting your password, press return on your keyboard. At this
point, you will be connected to your server remotely through SSH.

• Change to etc directory in OpenFOAM® installation directory

• Execute the following command:

>. ./bashrc

2.2.1. Running OpenFOAM® in Graphical Interface (VNC):

• Connect to remote machine via SSH connection using part B.

OpenFOAM® Basic Training

Appendix B

• Make sure VNC Server is installed on the remote machine and it is
started (ask administrator for display number, port and other information,
for starting VNC Server check FAQ)

• Install the appropriate VNC Viewer and run it (search for: vnc viewer):

VNC Server: localhost:01

• Press Connect

• Press Continue

• Enter your password

• Press Ok

• On VNC desktop open a terminal

• Change to etc directory in OpenFOAM® installation directory

• Execute the following command:

>. ./bashrc

If a new terminal in the VNC desktop is opened, the last two steps should be
done in that to activate OpenFOAM® in there.

http://www.chip.de/downloads/RealVNC_12997724.html

Appendix C

Frequently Asked Questions

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Appendix C

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Sylvia Zibuschka

• Yitong Chen

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Appendix C

Q - What should I do in case of a GAMBIT failure?

A - e.g. Program stops responding:

• Type "ps" in the command window, search for the GAMBIT process number.

• "kill -9 PROCESS NUMBER" Enter

GAMBIT creates lock files, which must also be deleted, otherwise it is not possible to
open of the affected files:

• "rm *. lok" Enter

Furthermore, "junk" (temporary files from GAMBIT) should be disposed of:

• "rm -fr GAMBIT.xxx" erases the complete directory, xxx again is the process
number.

• If you have forgotten, to save before the crash, you should copy the file "jou" (it
contains all the commands that have been executed and can be processed
automatically in GAMBIT) from the directory, to resume its status before the
crash.

Q - How can I prevent typing long commands in the terminal for couple of times?

A - Using curser keys to navigate line by line.

Type beginning of the command and use Tab (auto completion).

By using reverse search, use ctrl+r to search for previous commands typed in the
terminal, e.g. typing a part of command show the suggestions and you can navigate
through them.

Q - My VNC is not responding from server side?

A - First you should kill your VNC server:

>vncserver -kill :[YOUR DISPLAY NUMBER]

Restart your VNC server (according to SSH forward):

>vncserver:[YOUR DISPLAY NUMBER] -geometry 1600x800 -depth 24

Q - I have deleted some of my files accidently. What should I do?

A - Sorry, no recycling or undelete in Linux

Q - Why can I not connect to the server?

A - Check to see if you have an IP address for your network card.

Q - How can I start VNC Viewer from my Linux computer terminal?

A - Use command:

>vncviewer :[NUMBER OF LOCAL PORT, e.g. 1 or 2]

OpenFOAM® Basic Training

Appendix C

Q - Error “command not found”?

A - Make sure OpenFOAM® and ParaView are installed correctly. Check Appendix B for
starting OpenFOAM®.

Q - Does foamToVTK command not work for chtMultiRegionFoam?

A - Use command:

>foamToVTK -region[REGION NAME]

Q - Is it possible to export animations from ParaView?

A - Yes, by choosing .ogv file format from “file/save animation” menu. The output will be
a video file with .ogv format. In the new ParaView versions (newer than 4.3.0) the
animation can also be saved using .avi format.

Q - Is there any tool in Linux to convert series of ParaView pictures to video?

A - Yes, command line tool ffmpeg:

>ffmpeg -r [FRAME PER SECOND RATE] -f image2 -i [images names, e.g.
rho.%4d.jpg] [OUTPUT FILE NAME].[OUTPUT FILE FORMAT, e.g avi]

Q - How can complex geometries be patched?

A - During creating the geometry in the preprocessing software, e.g. GAMBIT, create
volume zones, which you will need to patch later (see software user manual for
creating regions in each software). For converting the mesh to the OpenFOAM®
mesh use the appropriate tool with “-writeZones” flag to import zones to
OpenFOAM®, e.g.:

>fluentMeshToFoam -writeZones <your mesh>

then in the setFieldDict change it like this:

regions

(

 zoneToCell

 {

 name air; // region name which you assigned in gambit

 fieldValues

 (

 volScalarFieldValue alpha.water 0 // the value of property

 //which you want to patch

);

 }

);

Then after running setFields tool, it will assign the values to that region.

OpenFOAM® Basic Training

Appendix C

Q - How can I create a bash scripting file for executing couple of command in series?

A -
Instead of typing command sequences one by one after each other and executing
them. It is possible to put all those commands in a file and execute that file to run
them. This is known as “bash scripting”.
Bash scripting is typically used in the cases when the same simulation should be run
with identical settings a couple of times, but with a few changes. For bash scripting
create an empty file (e.g. using nano editor creating text file “go”):

> nano go

Add the commands to this file (e.g. commands for running blockMesh, setFields,
decomposePar, compressibleInterFoam in parallel mode and reconstructPar):

blockMesh

setFields

decomposePar

mpirun –np 4 compressibleInterFoam –parallel >log

reconstructPar

Exit the editor and save the file (ctrl+x , y, enter for nano editor).
For changing this file to an executable file, file permissions should be set. By using
this command file permissions are displayed:

>ls -la go

-rw-r--r-- 1 e166**** E020D166 73 Aug 23 9:15 go

The first ‘r’ shows that this text file can be read by user, the ‘w’ shows that user has
the permission to write this file, but the ‘–‘ sign shows that this file is not executable
by the user. To change this permissions execute following command:

>chmod u+x go

Now this file is executable:

>ls -la go

-rwxr--r-- 1 e166**** E020D166 73 Aug 23 9:15 go

Now you can run the simulation by this executable text file:

>./go

After executing the file, the commands added to the file will be executed one by one.
In most of the OpenFOAM® tutorials there are Allrun and Allclean files, which are
bash scripts for running the case and cleaning a case, respectively.

Q - How the cover mesh has been created?

A - Error: invalid question!

Appendix D

Paraview

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Appendix D

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Sylvia Zibuschka

• Yitong Chen

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Appendix D

1. Introduction to ParaView

The post-processing application for OpenFOAM® is ParaView, which is a free,
open source program. In this tutorial, different features and tools available in
ParaView 5.10.1 will be explored.

ParaView Interface

The tree structure (“pipeline”) of ParaView helps the user to easily choose and
display suitable sub-models for creating the desired image or animation. Adding
a mesh or velocity vectors to a contour plot of pressure is an example of this
functionality.

For generation operations, use the OpenFOAM® command foamToVTK to
convert OpenFOAM® files into readable formats for ParaView. Then open the
.vtk file and press the green Apply button in the Properties panel. The reset
button is used for resetting the window and deleting the selected operation.

OpenFOAM® Basic Training

Appendix D

2. ParaView Interface

2.1. Properties Panel

Properties panel

- Colouring

The drop-down menu for solid colour allows different field variables to be
chosen and viewed, for example, pressure and velocity magnitude.

The Rescale button allows the data range to be adjusted to fit the data, as
sometimes the max/min data range are not updated automatically.

- Scalar Coloring

The ‘Map Scalars’ option allows the scalar values to be mapped to a specific
colour using a lookup table.

Turning the option ‘Interpolate Scalars Before Mapping’ on or off will affect the
way the scalar data is visualized with colours. According to the ParaView
documentation, if it is turned on, scalars will be interpolated within polygons and
colour mapping will happen on a per-pixel basis; if off, color mapping occurs at
polygon points and colors are interpolated, which is generally less accurate[1].

- Styling

The opacity of the image can be set (1 = solid, 0 = invisible) in the Opacity
option.

- Lighting

There are two options for Interpolation, Gouraud or Flat. With Gouraud shading
enabled, normals are defined only per point and no face normal is needed. If
the Interpolation is changed to Flat, only the face normals will be computed and
used for lighting, note that this option is not suitable for objects with smooth
surfaces [2].

OpenFOAM® Basic Training

Appendix D

- Backface Styling

This is an advanced feature in ParaView that enables the backface style of a
wire frame object to be changed.

- Transforming

The Transform filter allows you to translate, rotate and change the size and the
origin of the data sets.

- Miscellaneous

By default ParaView triangulate the cells and shows them as triangles. For
disabling this uncheck the “Triangulate” option in the Miscellaneous section of
the Properties panel.

- Glyph Parameters

The Glyth Parameters filter generates a glyph, which can be arrow, cone, box,
cylinder, line, sphere or a 2D glyph. The glyth is generated at each point in the
input dataset[3]. Depending on the type of glyph chosen, different options are
available to orientate, scale and size the glyph.

- Orientation Axes

The Orientation Axes feature controls an axes icon in the image window (e.g.
to set the color of the axes labels x, y and z).

- Lights

The lighting controls options appear when clicking on the Edit button. For
producing images with strong bright colors (e.g. isosurface) Headlight of
strength 1 is appropriate.

- Background

The background color of the layout can be chosen from the drop-down menu,
with types Single color, Gradient and Image available.

2.2. Button toolbars

Button toolbars

Pull-down menus at the top of the main window and the major panels, in the
toolbars below the main pull-down menus increase the functionality of
ParaView. The function of each button can be easily understood by its icon,
also any button description can be found in the Help menu (keeping the mouse
over an icon without clicking on it will also give a short explanation on its
functionality).

A feature worth mentioning is the drop-down menu next to the Reset button,
this provides the options of the different ways of presenting the mesh. To see
the structure of the mesh, use Surface with Edges; and to see both the cell
structure and the interior of the mesh, use Wireframe.

OpenFOAM® Basic Training

Appendix D

2.3. Color Map Editor Panel

Color map editor

The Choose preset button allows the color scheme of the scale to be chosen,
a common color scheme used is Blue to Red Rainbow. The Rescale to custom
range button allows the maximum and minimum values of the color scale to be
freely chosen by the user.

Another important feature can be used by clicking the button Edit color legend
properties on the top right of the panel, this allows the scale title, font style to
be changed.

3. Manipulating the view

3.1. Contour plots

Clicking on the Contour button in the Button Toolbars creates a contour plot.
The contour filter operates on any type of data set, but requires the input to
have at least one point-centered scalar (single-component) array. The output
of this filter is polygonal.

The chosen scalar field can be selected from a pull down menu. If the case is
a 3D case module, the contours will be a set of 2D surfaces that represent a
constant value. The Isosurfaces list in the Properties panel allows the user to
specify the values at which the isosurfaces are computed.

3.2. Introducing a cutting plane

Creating contour plots across a plane is more convenient than isosurfaces.
Cutting planes are the tools which can be used for this purpose, to create
surfaces. This can be done by clicking on the Slice button in the Button
Toolbars. A cutting plate can be manipulated and repositioned. In a similar way,
the contour lines can also be derived out of planes.

By default ParaView triangulate the cells and shows them as triangles. For
disabling this uncheck “triangulate the slice” option in the Properties panel of
the slice.

OpenFOAM® Basic Training

Appendix D

3.3. Streamlines

To create tracer lines, click on the Stream Tracer button in the Button Toolbars.
Tracer points can be along a line or points, and this can be chosen in the Seed
Type drop-down menu in the Seeds section of the Properties panel. Usually,
some trial and error is needed for achieving the desired streamlines. The length
of steps tracer takes can be changed in the Streamline Parameters section of
the Properties panel. A smaller length increases calculation time but increases
smoothness. For having high quality images Tubes filter can be used after
tracer lines have been created. There are different types of tubes, not only
cylindrical.

3.4. Vector plots

The Glyph filter is used for creating vector plots. Scale Mode menu in the
properties panel is used for:

- Setting the length of a vector, weather to be proportional to vector
magnitude or not, all with the same length (Vector).

- Controlling the base length of the glyphs (set Scale Factor).

4. Data Analysis

4.1. Plot over time

This option is available by clicking the Plot Selection Over Time button in the
Button Toolbars. This allows the data at one point to be plotted over the entire
time range.

4.2. Plot over line

This option allows the data points to be plotted along a line at a specific time
step. Click on the Plot Over Line button. The Cartesian coordinates of the
beginning and ending points of the line can be specified in the Properties panel.
Several variables can be plotted at the same time, to turn each variable on or
off and to change its legend name, use the Series Parameters section in the
Properties panel.

4.3. Integrate Variables

The Integrate Variables option is selected from the Filters menu. This tool
integrates point and cell data over lines and surfaces. It also computes length
of lines, area of surface, or volume[4]. Different data types available are Point
Data, Cell Data, or Field Data; this can be chosen in the Field Association
section in the Properties panel.

5. Exporting Data

5.1. Image Output

For creating a screenshot of the graphs, the easiest way is Save Screenshot
from File menu. After selecting it in the opened window, the picture resolution

OpenFOAM® Basic Training

Appendix D

can be set, and by locking the aspect ratio, changing image resolution in one
direction cause change in its resolution in the other direction respectively. For
high quality images, a resolution of more than 1000 pixels is a good choice.

5.2. Animation Output

Some animations can be saved in ParaView by selecting the Save animation
option in the File menu. The resolution and number of frames per time step can
be specified. You can save your animation by assigning a name and choosing
the file format. The most suitable file format is .ogv.

5.3. Data Output

The field values of a chosen variable (e.g. temperature or pressure) can be
exported into Excel using the Save Data option in the File menu. The precision
of the writer can be chosen and there is an option to export data from all time
steps.

