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This tutorial series introduces OpenFOAM®, a widely used open-source 
software for Computational Fluid Dynamics (CFD). Fourteen case examples 
help the users to learn essential OpenFOAM® tools and functions. These 
examples cover different aspects such as mesh generation, multiphase 
modeling, turbulence modeling, parallel processing and reaction modeling. 
 
Where to Find Tutorial Cases?   
The base tutorial cases can be accessed directly from OpenFOAM® installation 
directory or will be compiled in step-by-step approach.   
 
Compatibility with OpenFOAM® Versions 
These tutorials are designed primarily for OpenFOAM® v12 (Foundation 
version – www.openfoam.org). However, they can also be adapted for other 
OpenFOAM® versions, such as:   

• ESI-OpenFOAM® (maintained by OpenCFD) 
• Foam-extend (a community-driven fork with additional features) 

 
Tutorial Structure   
Each case example follows a structured learning approach:   
0. Background: overview of the key concepts covered in the tutorial and the 

CFD principles related to the case.   
1. Pre-processing: step-by-step setup of the case, including directory 

structure, essential input files (dictionaries), and necessary modifications.   
2. Running the simulation: instructions on executing the solver, running 

necessary commands, and monitoring the progress of the simulation.   
3. Post-processing: analyzing the simulation results using OpenFOAM®'s 

built-in tools and the visualization software ParaView v5.x.   
 
By following these tutorials, users will gain hands-on experience in setting up, 
running, and analyzing CFD simulations in OpenFOAM®.  
  



 

 
OpenFOAM® Basic Training 

Table of Contents 

 

 

Tutorial One: Basic Case Setup 

Solver: icoFoam 
Geometry: 2-dimensional 
Tutorial: elbow 

Tutorial Two: Built in Mesh 

Solver: fluid 
Geometry: 2-dimensional 
Tutorial: forwardStep 

Tutorial Three: Patching Fields 

Solver: fluid 
Geometry: 1-dimensional 
Tutorial: shockTube 

Tutorial Four: Discretization – Part 1 

Solver: functions 
Geometry: 1-dimensional 
Tutorial: shockTube 

Tutorial Five: Discretization – Part 2 

Solver: functions 
Geometry: 2-dimensional 
Tutorial: circle 

Tutorial Six: Turbulence, Steady state 

Solver: incompressibleFluid 
Geometry: 2-dimensional 
Tutorial: pitzDaily 

Tutorial Seven: Turbulence, Transient 

Solver: incompressibleFluid 
Geometry: 2-dimensional 
Tutorial: pitzDaily 

Tutorial Eight: Multiphase - VoF  

Solver: incompressibleVoF 
Geometry: 2-dimensional 
Tutorial: damBreak  



 

 
OpenFOAM® Basic Training 

Table of Contents 

 

 

Tutorial Nine: Parallel Processing  

Solver: compressibleVoF 
Geometry: 3-dimensional 
Tutorial: depthCharge3D 

Tutorial Ten: Residence Time Distribution 

Solver: incompressibleFluid, functions 
Geometry: 3-dimensional 
Tutorial: TJunction 

Tutorial Eleven: Reaction 

Solver: multicomponentFluid 
Geometry: 3-dimensional 
Tutorial: reactingElbow 

Tutorial Twelve: snappyHexMesh – Single Region 

Solver: snappyHexMesh, functions 
Geometry: 3-dimensional 
Tutorial: flange 

Tutorial Thirteen: snappyHexMesh – Multi Region 

Solver: snappyHexMesh, fluid, solid 
Geometry: 3-dimensional 
Tutorial: snappyMultiRegionHeater 

Tutorial Fourteen: Sampling 

Solver: fluid 
Geometry: 3-dimensional 
Tutorial: shockTube 

Appendix A: Important Commands in Linux 

 

Appendix B: Running OpenFOAM® 

 

Appendix C: Frequently Asked Questions (FAQ) 

 

Appendix D: ParaView 

 



 

 

OpenFOAM® Basic Training 

Tutorial One 

 

Tutorial One 

Basic Case Setup 

 

Bahram Haddadi 

 

 

 

 

7th edition, March 2025 

  



 

 

OpenFOAM® Basic Training 

Tutorial One 

 

Contributors: 

• Bahram Haddadi 

• Christian Jordan 

• Michael Harasek 

• Clemens Gößnitzer  

• Sylvia Zibuschka 

• Yitong Chen 

• Vikram Natarajan 

• Jozsef Nagy 

 
 

Technische Universität Wien 

Institute of Chemical, Environmental 

& Bioscience Engineering 

 

 

 

 

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) 
This is a human-readable summary of the Legal Code (the full license). 
Disclaimer 
You are free: 

• to Share — to copy, distribute and transmit the work 

• to Remix — to adapt the work 
Under the following conditions: 

• Attribution — you must attribute the work in the manner specified by the author or 
licensor (but not in any way that suggests that, they endorse you or your use of the 
work). 

• Noncommercial — you may not use this work for commercial purposes. 

• Share Alike — if you alter, transform, or build upon this work, you may distribute the 
resulting work only under the same or similar license to this one.  

With the understanding that: 

• Waiver — any of the above conditions can be waived if you get permission from the 
copyright holder. 

• Public Domain — where the work or any of its elements is in the public domain under 
applicable law, that status is in no way affected by the license. 

• Other Rights — In no way are any of the following rights affected by the license: 

• Your fair dealing or fair use rights, or other applicable copyright exceptions and 
limitations; 

• The author's moral rights; 

• Rights other persons may have either in the work itself or in how the work is used, 
such as publicity or privacy rights. 

• Notice — for any reuse or distribution, you must make clear to others the license 
terms of this work. The best way to do this is with a link to this web page. 

 

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®  
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® 

trademark. 

 

Available from: www.fluiddynamics.at  



 

 

OpenFOAM® Basic Training 

Tutorial One 

 

Background 

1. What is CFD? 

Computational Fluid Dynamics (CFD) is a method used to analyze systems 
involving fluid flow, heat transfer, and related phenomena such as heat and 
mass transfer. This analysis is performed through computer-based simulations, 
which help in understanding how fluids behave under different conditions. CFD 
is a powerful tool used in a variety of fields, including aerospace, automotive, 
chemical engineering, environmental studies, and biomedical applications. 

The goal of CFD development is to create tools that are as reliable as other 
computer-aided engineering (CAE) methods like stress analysis. However, 
CFD is trickier due to the complex nature of fluid flow, which involves 
turbulence, variable properties, and nonlinear behavior. The mathematical 
foundation of CFD is based on the Navier-Stokes and continuity equations, 
which describe the motion of fluid substances and are derived from 
fundamental conservation laws (mass and momentum). These equations are 
partial differential equations that represent how fluid velocity, pressure, and 
density change over time and space. 

While CFD offers many advantages, such as cost reduction in experimental 
setups and the ability to simulate complex scenarios, it is not fully automated. 
A good understanding of the underlying physics is necessary to set up a reliable 
simulation and interpret results correctly. Additionally, even with advanced 
computational resources, real-time simulations are still challenging due to the 
intensive calculations required. CFD is typically used alongside experimental 
methods like wind tunnel testing to validate and improve results. 

CFD software comes in two main types: 

• Open-source and free (e.g., OpenFOAM®): Offers flexibility for 
modification and customization, making it popular in academic and 
research environments. 

• Commercial and closed source (e.g., ANSYS Fluent, COMSOL): 
Provides user-friendly interfaces, technical support, and advanced 
features, making it suitable for industrial applications. 

In this guide, the focus will be on OpenFOAM®, an open-source CFD software 
written in C++. It allows users to access, modify, and even develop custom 
solvers to meet specific research or industrial needs. OpenFOAM® is widely 
used due to its flexibility and extensive documentation, although it requires a 
good understanding of both CFD principles and programming basics. 

For beginners, it's helpful to think of CFD as a "virtual wind tunnel" where you 
can simulate fluid flow without physically building models or conducting real-
world experiments. This makes it a cost-effective and versatile tool, especially 
during the design and testing phases of engineering projects. 

CFD is not only limited to air and water flow simulations, and it is extensively 
used in modeling different sophisticated processes such as: weather patterns 
(meteorology), blood flow in arteries (biomedical engineering), combustion 
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processes in engines (mechanical engineering), pollution dispersion in the 
atmosphere (environmental engineering) and many more! 

2. Workflow of CFD 

A typical CFD workflow consists of three main stages: 

2.1 Pre-processing 

This stage involves setting up the simulation, including: 

• Geometry Definition: Creating the computational domain that 
represents the physical system. This can be done using CAD 
(Computer-Aided Design) software or built-in geometry tools in CFD 
software. The accuracy of geometry affects how well simulation 
represents the real-world scenario. Think of geometry as the "shape" or 
"structure" through which the fluid will flow. Beginners can start with 
simple geometries like pipes, ducts, or channels before progressing to 
complex designs. 

• Mesh Generation: Dividing the domain into smaller, non-overlapping 
elements (cells) to form a grid. The quality and density of the mesh 
significantly affect the accuracy of the simulation. Finer meshes are used 
in regions with high gradients (e.g., near walls, sharp edges, or around 
obstacles), while coarser meshes suffice for uniform flow areas. Meshes 
can be structured (regular grids) or unstructured (irregular shapes), 
depending on the complexity of the geometry. A structured mesh is 
easier to generate and solve but less flexible for complex geometries, 
while an unstructured mesh can fit intricate shapes better. Imagine the 
mesh as a net spread over your geometry. The tighter the net (finer 
mesh), the more detailed your simulation results will be. However, this 
also increases computational effort, so there's a balance to be found. 

• Model Selection: Choosing physical models to represent phenomena 
such as turbulence (e.g., k-epsilon, k-omega models), heat transfer, and 
chemical reactions. The selection depends on the flow regime (laminar 
or turbulent) and the specific application.  

• Fluid Properties: Defining parameters like density, viscosity, thermal 
conductivity, and specific heat capacity. These properties vary with 
temperature, pressure, or composition in complex simulations. 
Incompressible flow assumes constant density, while compressible flow 
accounts for changes in density due to pressure and temperature 
variations. 

• Boundary and Initial Conditions: Setting conditions at the domain's 
boundaries (e.g., velocity at an inlet, pressure at an outlet, wall 
conditions) and initial conditions for transient simulations. Proper 
boundary conditions are crucial for accurate results.  

The solution variables (e.g., velocity, pressure, temperature) are calculated at 
specific points within each cell. The mesh's resolution influences the 



 

 

OpenFOAM® Basic Training 

Tutorial One 

 

simulation's accuracy and computational cost. A mesh independence study is 
often performed to ensure that the results are not sensitive to the mesh size. 
This involves running simulations with progressively finer meshes until the 
changes in results become negligible. 

Tip for beginners: Start with a coarser mesh to get quick results, then gradually 
refine the mesh to see how it affects accuracy. This helps you learn how 
sensitive your simulation is to mesh density. 

2.2 Solver 

In this stage, numerical methods are applied to solve the governing equations 
of fluid flow, including: 

• Conservation Equations: Mass, momentum, and energy conservation 
laws are integrated over each control volume. These equations are often 
coupled, meaning changes in one variable affect others. For example, 
changes in velocity can influence pressure and vice versa. 

• Discretization: The continuous equations are converted into algebraic 
forms using methods like the finite volume method (FVM), which ensures 
conservation principles are maintained within each cell. Other methods 
include the finite difference method (FDM) and finite element method 
(FEM), though FVM is most common in CFD. Discretization involves 
approximating derivatives with algebraic expressions, allowing the 
equations to be solved numerically. 

• Solution Techniques: The resulting algebraic equations are solved 
iteratively until convergence is achieved. Common iterative solvers 
include the SIMPLE (Semi-Implicit Method for Pressure-Linked 
Equations) and PISO (Pressure-Implicit with Splitting of Operators) 
algorithms. Convergence is determined when changes in the solution 
between iterations fall below a predefined threshold. 

The finite volume method is widely used because it ensures the conservation 
of physical quantities within each control volume, making it both accurate and 
robust. It is also flexible for handling complex geometries and boundary 
conditions.  

Think of the solver as the "engine" of CFD—it's where all the heavy lifting 
happens to calculate how the fluid moves. Understanding how the solver works 
helps in troubleshooting and optimizing simulations. 

2.3 Post-processing 

This stage involves analyzing and visualizing the simulation results. Key tasks 
include: 

• Visualization: Using cutting planes, contour plots, vector fields, 
streamlines, and line plots to represent flow variables such as velocity, 
pressure, and temperature distributions. Visualization helps in identifying 
flow patterns, vortices, and areas of interest like high-pressure zones. 
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• Data Analysis: Evaluating physical quantities like forces (drag, lift), heat 
transfer rates, pressure drops, and flow rates. Quantitative analysis 
helps validate the simulation results against experimental data or 
theoretical predictions. 

• Validation: Comparing simulation results with experimental data or 
theoretical models to ensure accuracy. Sensitivity analysis may be 
conducted to understand the influence of different parameters.  

Popular post-processing tools include commercial software like TecPlot and 
Ensight, as well as open-source tools such as ParaView and SALOME. These 
tools allow for advanced visualization techniques, including 3D rendering and 
time-dependent animations, making it easier to interpret complex flow 
behaviors. 

Tip: Post-processing is not just about making pretty pictures. It helps you 
understand the flow physics and detect any errors or inconsistencies in your 
simulation. 

3. icoFoam Solver 

icoFoam is an OpenFOAM® solver suitable for analyzing incompressible, 
laminar flow of Newtonian fluids. It is based on the PISO algorithm (pressure-
implicit split-operator), which is essentially a pressure-velocity iterative 
procedure for transient problems. In each iterative step, PISO solves the 
momentum equation using one predictor step, with two further corrector steps 
for both velocity and pressure. 
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icoFoam – elbow 

Tutorial outline 

Using icoFoam solver, simulate 75 s of flow in an elbow for the following 
GAMBIT® meshes: 

• Tri-mesh (comes with OpenFOAM® tutorial) 

• Hex-mesh coarse (check GAMBIT® “elbow 2D” tutorial) 

• 2 times finer hex-mesh (refined previous step mesh) 

Objectives 

• Basic case setup in OpenFOAM® 

• Setting up initial values of p and U 

• Ensuring proper boundary definitions (imported boundaries from 
GAMBIT®, additional surfaces during conversion and boundaries definition in 
OpenFOAM®) 

Data processing 

Import your simulation to ParaView, extract data to make two diagrams (using 
spreadsheet calculators) of pressure and velocity magnitude along a line 
between two tubes, do the same for all three simulations.   
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1. Pre-processing 

1.1. Setting system environment 

Make sure your system environment is set correctly under the chosen version 
of OpenFOAM® (v12), check Appendix B Part A. 

1.2. Copying tutorial 

Open a terminal and copy the elbow tutorial from the following path to your 
working directory (see Appendix A for running a terminal in Linux): 

$FOAM_TUTORIALS/legacy/incompressible/icoFoam/elbow 

Note: The ‘$FOAM_TUTORIALS’ allows the tutorial to be extracted from the 
tutorial folder in the installation directory of OpenFOAM® under the current 
system environment.  

Note: The tutorial can also be simply copied from the mentioned directory using 
your file explorer. 

1.3.  Converting mesh 

The mesh, which is produced by GAMBIT®, is not directly compatible with 
OpenFOAM®. First, the mesh needs to be converted to an OpenFOAM® mesh, 
using the following tool: 

>fluentMeshToFoam elbow.msh  

Note: the ‘>’ sign is not part of the command. It is only used to show that the 
command should be typed inside a terminal.  

If the mesh was created in mm and is converted using the mentioned command 
it will convert the mesh with wrong dimensions, since all the units in 
OpenFOAM® are SI Units (International System of Units).  

There are different flags included with most of OpenFOAM® tools, for checking 
them use the flag -help after the command, e.g.: 

>fluentMeshToFoam –help 

The output gives an overview of available options of the tool and a short 
description on how to use it: 

Usage: fluentMeshToFoam [OPTIONS] <Fluent mesh file> 

options: 

  -2D <thickness>   use when converting a 2-D mesh (applied before scale) 

  -case <dir>       specify alternate case directory, default is the cwd 

  -fileHandler <handler> 

        override the fileHandler 

  -libs <(lib1 .. libN)> 

        pre-load libraries 

  -noFunctionObjects 

                    do not execute functionObjects 

  -scale <factor>   geometry scaling factor - default is 1 

  -writeSets        write cell zones and patches as sets 

  -writeZones       write cell zones as zones 
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  -srcDoc           display source code in browser 

  -doc              display application documentation in browser 

  -help             print the usage 

Using: OpenFOAM-10 (see https://openfoam.org) 

Build: 10 

The -scale flag is used for converting the mesh dimensions from other units 

to SI units, e.g. if the mesh was created in mm it will be converted to meter by 
using -scale 0.001 (which is not the case in this tutorial): 

>fluentMeshToFoam elbow.msh -scale 0.001 

Note: The mesh which is imported to OpenFOAM® should be a three-
dimensional mesh. For carrying out 2D (also 1D) simulations, a three-
dimensional mesh should be created with just one cell in the third dimension 
(for 1D, one cell in the second and one cell in the third direction). 

Note: If there are internal boundaries in the mesh, there is another tool, 
fluent3DMeshToFoam. Using this tool, the internal boundaries will be kept 
during conversion. 

1.4. Case structure 

Most of the cases in OpenFOAM® have the following basic case structure 
(directory tree): 

 

There are three main directories (0, constant, system) in each case folder: 

1.4.1. 0 directory 

The 0 directory includes the initial and boundary conditions for running the 
simulation. In each file in this folder, the initial conditions for one property can 
be set. The files are named after the property they are standing for, e.g. usually 

https://openfoam.org/
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p file includes pressure initial and boundary conditions. In the elbow example, 
there are only two files inside the 0 directory, p and U. p stands for pressure 
and U stands for velocity. Checking p: 

>nano  p 

Note: nano is the command line based text editor, which comes by default with 
Ubuntu. You can use any other text editor (also graphical ones) for opening and 
editing the files. 

Note: You can use ctrl+x for closing and exiting the nano. 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Website:  https://openfoam.org                  | 

|   \\  /    A nd           | Version:  12                                    | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    format      ascii; 

    class       volScalarField; 

    object      p; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

dimensions      [0 2 -2 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

    wall-4           

    { 

        type            zeroGradient; 

    } 

 

    velocity-inlet-5  

    { 

        type            zeroGradient; 

    } 

 

    velocity-inlet-6  

    { 

        type            zeroGradient; 

    } 

 

    pressure-outlet-7  

    { 

        type            fixedValue; 

        value           uniform 0; 

    } 

 

    wall-8           

    { 

        type            zeroGradient; 

    } 

 

    frontAndBackPlanes  

    { 

        type            empty; 

    } 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 
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In dimensions, the physical dimension according to SI base units of the 

quantity is defined, for example here it shows that the p dimension is (m/s)2. 

Note: In the dimension matrix the first number represents mass (kilogram), the 
second one the length (meter), the third one time (second), the fourth one the 
temperature (Kelvin), the fifth one the quantity (mole), the sixth one current 
(ampere) and the last one luminous intensity (candela). 

Note: As you can see the p unit is not the pressure unit (Pa). It is because in 
incompressible solvers in OpenFOAM® p is defined as pressure divided by 
density. 

The internalField sets the initial field of a specific quantity in the solution 

domain. There are two types: uniform and non-uniform. Uniform field assigns a 
single value to all cells, whereas non-uniform field specifies a unique value to 
each field element.  

The type of each of our boundaries as well as the value of this quantity on the 
boundaries is defined in the boundaryField. There are many different types 

of boundary conditions in OpenFOAM®, a few very common ones:   

- zeroGradient: Applies a zero gradient boundary type to this boundary 

(Neumann boundary condition).  

- fixedValue: Applies a fixed value to this boundary (Dirichlet boundary 

condition). 

- empty: It is for sides, which are vertical to the direction that is not going 

to be considered (e.g. in 2D simulations these boundaries are vertical to 
the third dimension). In this boundary type both sides vertical to one 
dimension should be selected together and named as one boundary. 

Note: If a fixedValue boundary condition with value equals 

$internalField is used, it is equal to using zeroGradient, except 

zeroGradient applies the boundary condition implicitly, but fixedValue 

with $internalField value applies the boundary condition explicitly. 

The U file has to be defined via three components (since velocity is a vector): 
first one stands for the x component, second one for the y component, and the 
third one for the z component of the velocity. For this case setup the z 
component is always zero because it is a 2D simulation and no calculations will 
be done in the z direction. The boundaries vertical to z direction have been 
already set to empty. 

1.4.2.  constant directory 

The constant directory usually consists of the mesh subdirectory and some 
files. In the sub-directory “polyMesh” the mesh data are stored (in this case the 
data for imported mesh). Among the files in the polyMesh directory, the 
boundary file is relevant for users and includes the mesh boundary data, e.g. 
name, type and the patch group which can be modified by the user for changing 
the boundary type or name for a created or imported mesh (for the sake of 
space, the dictionary headers will not be included in this scope anymore): 
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

6 

( 

    wall-4 

    { 

        type            wall; 

        inGroups        List<word> 1(wall) 

        nFaces          100; 

        startFace       1300; 

    } 

    velocity-inlet-5 

    { 

        type            patch; 

        nFaces          8; 

        startFace       1400; 

    } 

… 

    frontAndBackPlanes 

    { 

        type            empty; 

        inGroups        List<word> 1(empty); 

        nFaces          1836; 

        startFace       1454; 

    } 

) 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

Comparing the boundary names and types with the ones set in GAMBIT®, they 
should be the same.  

Note: However, in terms of boundary type, empty boundary condition does not 
exist in GAMBIT®. All the faces perpendicular to the direction, which is not going 
to be considered, are defined as a new boundary with type wall. After importing 
the mesh to OpenFOAM®, modify that boundary in the file constant/polyMesh/ 
boundary, and change its type from wall to empty, and change inGroups 

from wall to empty. In this case, after converting the mesh, the face 

frontAndBackPlanes needs to be modified for both hex-mesh and finer hex-

mesh. 

The files in the constant directory (usually) include material properties, 
simulation physics and chemistry, e.g. by opening the physicalProperties file, 
properties dimensions and the property value can be found and edited, e.g.: 

nu              [ 0 2 -1 0 0 0 0 ] 0.01; 

nu is the fluid kinematic viscosity, which is 0.01 m2/s for this example. 

1.4.3. system directory 

Solver and finite volume methods settings can be found and changed in this 
directory. There are three main files in this directory:  

- fvSchemes: The discretization scheme used for each term of the 
equations are set in this file (it will be discussed in more detail in the next 
tutorials).  

- fvSolution: Contains the settings to the coupling method of pressure 
and velocity, the numerical methods, which are used for solving different 
quantities, and the final tolerance for convergence of that quantity.  



 

 

OpenFOAM® Basic Training 

Tutorial One 

 

- controlDict: The time from where simulation starts (startFrom), the 

time when the simulation finishes (stopAt), the time step (deltaT), the 

data saving interval (writeInterval), the saved data file format 

(writeFormat), the saved file data precision (writePrecision), and 

also if changing the files during the run can affect the run or not 
(runTimeModifiable) are set in this file. 

Note: If the write format is ascii, then the simulation data which is written to 

the file can be opened and read using any text editor. If the format is binary, 

the data will be written in binary style and is not readable by text editors. The 
advantage of binary over ascii is the smaller file size, and consequently faster 
conversion and writing to disk, for big simulations. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

application     icoFoam; 

 

startFrom       latestTime; 

 

startTime       0; 

 

stopAt          endTime; 

 

endTime         75; 

 

deltaT          0.05; 

 

writeControl    timeStep; 

 

writeInterval   20; 

 

purgeWrite      0; 

 

writeFormat     ascii; 

 

writePrecision  6; 

 

writeCompression off; 

 

timeFormat      general; 

 

timePrecision   6; 

 

runTimeModifiable true; 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

Note: This simulation continues from the last time step data, which is saved 
(latestTime). If there was no saved data, it will start from start time 

(startTime), which is zero in this case.  

Note: Our first modification in the simulation is changing the endTime from the 

original value of 10s to 75s, for running the simulation up to 75s. 
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2. Running simulation 

The simulation can be run by typing the solver’s name and executing it: 

>icoFoam 

Note: For running the simulation, the solver command (e.g. icoFoam) should 
be executed inside the copy of the tutorial main folder. For example: The 
command should be executed in the elbow folder, if it was run at some 
subfolders or somewhere else, the simulation will fail. 

3. Post-processing 

3.1. Exporting simulation data 

The data files created by OpenFOAM® should be exported (converted) by the 
appropriate tools, to the post processing tools data format. For ParaView: 

>foamToVTK 

where VTK is the ParaView data format. This command should be also 
executed in the case main directory, e.g. elbow. Here, ParaView is used as the 
post-processing tool, for running it 

>paraview & 

Note: Another option to open the OpenFOAM® simulation results with ParaView 
without converting them to VTK; Create an empty text file in the main case 
directory, name it <someName>.foam (e.g. foam.foam), and execute the 
following command. This method is good for fast evaluation of the data in the 
middle of the simulation or with a decomposed case in parallel simulations: 

>paraview foam.foam & 

Note: By putting & at the end of command, the command line will remain active 
and ready for further inputs while that program is running. 

3.2. Examining different meshes 

Do the same for the other two meshes. Only the mesh for the first simulation is 
included in the elbow example of OpenFOAM®. For the other two simulations, 
the mesh should be provided by the user. For finding the tutorials on how to 
create the geometry and the mesh, search the internet for “GAMBIT® elbow 
mesh 2D”. The dimensions and the mesh info are provided in that tutorial. Try 
to create it by using GAMBIT® (or any other similar mesh creation tools). When 
you are done, you have to convert it into a 3D mesh with one cell in the z-
direction.  

The comparisons of all three case results and charts are shown below. 
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The Hex Fine mesh 

 

Pressure and velocity for different meshes at t=75 s, along the arc shown 
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The comparison plots are along the line between points A (54 0 0) at the small 
tube entrance and B (60 60 0) at the large tube exit part (length units are in 
meter) for Tri-mesh, for other two meshes created using GAMBIT® the points 
are A (22 -33 0) and B (27 30 0).  

Mesh Pressure Velocity 

Tri 

  

Hex 

  

Hex 

Fine 

  

 

  

Comparison of different mesh type results at t = 75 s 
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Note: For extracting data over a line, the line should be defined in ParaView 
using “Plot Over Line”, then the data over this line can be exported by choosing 
Save Data from File menu in ParaView. 
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Background 

1. What is Mesh? 

When studying fluid flow and heat transfer, mathematical equations known as 
partial differential equations (PDEs) describe how physical properties such as 
mass, energy, and momentum change over space and time. However, solving 
these equations directly (analytically) is extremely difficult unless the problem 
is very simple. 

To solve PDEs numerically, these equations are discretized and converted from 
a set of PDEs to a set of algebraic equations. This involves breaking the entire 
fluid domain into many smaller, manageable sections. These small sections are 
called grid cells, and together they form a mesh. 

A mesh is like a net or grid that covers the entire area where fluid behavior is 
analyzed. The finer (smaller) the mesh, the more accurately flow details can be 
captured, but at the cost of increased computational demand. Choosing the 
right mesh ensures a balance between accuracy and efficiency in simulations. 

One of the most common numerical methods for solving these equations is the 
finite volume method (FVM), which is explained below. 

2. The Finite Volume Method (FVM) 

OpenFOAM® applies the finite volume method (FVM) to simulate fluid flow. This 
method works by applying a key equation called the transport equation, which 
describes how physical property (such as velocity, temperature, or pressure) 
moves through a fluid domain over time. The general transport equation is: 

𝜕(𝜌𝜑)

𝜕𝑡
+ ∇ ∙ (𝜌𝜑𝒖) = ∇ ∙ (𝛤∇𝜑) + 𝑆𝜑 

Rate of change 
of φ inside fluid 

element 
+ 

Net rate of flow 
of φ out of fluid 

element 
= 

Rate of change of 
φ due to diffusion 

+ 
Rate of change of φ 

due to sources 

The finite volume method works by applying and integrating this equation over 
a control volume (CV), which is a small section of the mesh. A mathematical 
technique called the Gauss divergence theorem helps converting volume 
integral terms in the equation into surface integrals. This allows for the 
calculation of the amount of a property entering and exiting each grid cell, 
ensuring that all properties are conserved throughout the simulation. 

∫
𝜕

𝜕𝑡
(∫ 𝜌𝜑

𝐶𝑉

𝑑𝑉) 𝑑𝑡
∆𝑡

+ ∫ ∫ 𝒏 ∙ (𝜌𝜑𝒖)
𝐴

𝑑𝐴𝑑𝑡
∆𝑡

= ∫ ∫ 𝒏 ∙ (𝛤∇𝜑)
𝐴

𝑑𝐴𝑑𝑡
∆𝑡

+ ∫ ∫ 𝑆𝜑𝑑𝑉
𝐶𝑉

𝑑𝑡        
∆𝑡

 

For time-dependent problems, the equation must also be integrated over a 
small time step (Δt\Delta t) to account for changes in properties over time. This 
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step-by-step approach is essential for accurately capturing transient behaviors, 
such as turbulence or shock waves. 

3. Discretization of Transport Equations 

Discretization of the transport equations is critical to the finite volume method 
and is done using the mesh, which involves dividing the domain into smaller 
regions. 

In CFD, the meshes can be divided into two main categories: 

• Structured meshes: These are arranged in a regular, grid-like pattern, 
often using Cartesian coordinates (X, Y, Z directions). They are simple 
to use but may not work well for complex geometries. 

• Unstructured meshes: These use irregularly shaped grid cells and can 
represent complex shapes, such as curved surfaces and complex 
objects, more accurately. 

Mesh generation in OpenFOAM® is done using built-in tools such as blockMesh 
(for structured meshes) and snappyHexMesh (for unstructured meshes). 
External software like GAMBIT® can also be used for creating meshes. This 
tutorial focuses on using blockMesh, which provides a simple way to generate 
structured grids. More advanced mesh generation using snappyHexMesh is 
covered in Tutorial Twelve. 

4. foamRun Solver – fluid module 

In OpenFOAM® 12, the foamRun application serves as a versatile tool for 
executing various solver modules. Unlike traditional/legacy solvers (e.g. 
icoFoam) that are specific to certain types of simulations, foamRun dynamically 
loads and runs a solver module which can be either defined in the simulation 
setup or as a command-line argument. This modular approach enhances 
flexibility, allowing users to select appropriate solver modules for their specific 
simulation needs.  

“fluid” is the solver module for steady or transient turbulent flow of compressible 
fluids with heat-transfer with optional mesh motion and change.  
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fluid Solver – forwardStep 

Tutorial outline 

Using foamRun and fluid solver, simulate 10 s of flow over a forward step. 

Objectives 

• Understand blockMesh 

• Define vertices via coordinates as well as surfaces and volumes via 
vertices. 

Data processing 

Import your simulation into ParaView, and examine the mesh and the results in 
detail.   
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1. Pre-processing 

1.1. Copying tutorial 

Copy the tutorial from the following folder to your working directory: 

$FOAM_TUTORIALS/fluid/forwardStep 

1.2. Case structure 

1.2.1. 0 directory 

There are two new files in the 0 folder, T and Ma. File T includes the initial 
temperature values and Ma is the Mach number values which are calculated 
using the OpenFOAM® function objects (this can be ignored for this tutorial). 
Internal pressure and temperature fields are set to 1, and the initial velocity in 
the domain as well as the inlet boundary is set to (3 0 0). 

Note: As it can be seen, the p unit is the same as the pressure unit (kg m-1 s-2), 
because fluid module is for compressible fluids. 

Note: Do not forget that, this example is a purely numeric example (you might 
have noticed this from the pressure values). 

1.2.2. constant directory 

By checking physicalProperties file, different properties of a compressible gas 
can be set: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

thermoType 

{ 

    type            hePsiThermo; 

    mixture         pureMixture; 

    transport       const; 

    thermo          hConst; 

    equationOfState perfectGas; 

    specie          specie; 

    energy          sensibleInternalEnergy; 

} 

// Note: these are the properties for a “normalized” inviscid gas 

//    for which the speed of sound is 1 m/s at a temperature of 1K 

//    and gamma = 7/5 

mixture 

{ 

    specie 

    { 

        molWeight       11640.3; 

    } 

    thermodynamics 

    { 

        Cp              2.5; 

        Hf              0; 

    } 

    transport 

    { 

        mu              0; 

        Pr              1; 

    } 

} 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 
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In the thermoType, the models for calculating thermo physical properties of gas 

are set: 

- type: Specifies the underlying thermos-physical model, which in this 

case is enthalpy based thermodynamics while incorporating the 
equation of state using psi (compressibility) 

- mixture: Is the model, which is used for the mixture, whether it is a 

pure mixture, a homogeneous mixture, a reacting mixture or ….  

- transport: Defines the transport model used. In this example a 

constant value is used for viscosity.  

- thermo: It defines the method for calculating heat capacities, e.g. in this 

example constant heat capacities are used.  

- equationOfState: Shows the relation which is used for the 

compressibility of gases. Here ideal gas model is applied by selecting 
perfectGas.  

- energy: This key word lets the solver decide which type of energy 

equation it should solve enthalpy or internal energy. 

After defining the models for different thermos-physical properties of gas, the 
constants and coefficients of each model are defined in the sub-dictionary 
mixture. E.g. molWeight shows the molecular weight of gas, Cp stands for 

heat capacity, Hf is the heat of fusion, mu is the dynamic viscosity and Pr shows 

the Prandtl number. 

By opening the momentumTransport the appropriate turbulent mode can be set 
(in this case it is laminar): 

simulationType   laminar; 

1.2.3. system directory 

In this tutorial the mesh is not imported from other programs (e.g. GAMBIT®). It 
will be created inside OpenFOAM®. For this purpose the blockMesh tool is 
used. blockMesh reads the geometry and mesh properties from the 
blockMeshDict file (found in the system directory): 

>nano blockMeshDict 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

convertToMeters 1; 

vertices         

( 

    (0 0 -0.05) 

    (0.6 0 -0.05) 

    (0 0.2 -0.05) 

    (0.6 0.2 -0.05) 

    (3 0.2 -0.05) 

    (0 1 -0.05) 

    (0.6 1 -0.05) 

    (3 1 -0.05) 

    (0 0 0.05) 

    (0.6 0 0.05) 

    (0 0.2 0.05) 

    (0.6 0.2 0.05) 

    (3 0.2 0.05) 
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    (0 1 0.05) 

    (0.6 1 0.05) 

    (3 1 0.05) 

); 

blocks           

( 

    hex (0 1 3 2 8 9 11 10) (25 10 1) simpleGrading (1 1 1) 

    hex (2 3 6 5 10 11 14 13) (25 40 1) simpleGrading (1 1 1) 

    hex (3 4 7 6 11 12 15 14) (100 40 1) simpleGrading (1 1 1) 

); 

defaultPatch            

{ 

    type  empty; 

} 

boundary 

( 

    inlet 

    { 

        type patch; 

        faces 

        ( 

            (0 8 10 2) 

            (2 10 13 5) 

        ); 

    } 

    outlet 

    { 

        type patch; 

        faces 

        ( 

            (4 7 15 12) 

        ); 

    } 

    bottom 

    { 

        type symmetryPlane; 

        faces 

        ( 

            (0 1 9 8) 

        ); 

    } 

    top 

    { 

        type symmetryPlane; 

        faces 

        ( 

            (5 13 14 6) 

            (6 14 15 7) 

        ); 

    } 

    obstacle 

    { 

        type patch; 

        faces 

        ( 

            (1 3 11 9) 

            (3 4 12 11) 

        ); 

    } 

); 

 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

As noted before units in OpenFOAM® are SI units. If the vertex coordinates 
differ from SI, they can be converted with the convertToMeters command. The 

number in the front of convertToMeters shows the constant, which should be 
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multiplied with the dimensions to change them to meter (SI unit of length). For 
example: 

convertToMeters    0.001; 

shows that the dimensions are in millimeter, and by multiplying them by 0.001 
they are converted into meters. 

In the vertices part, the coordinates of the geometry vertices are defined, the 

vertices are stored and numbered from zero, e.g. vertex (0 0 -0.05) is 

numbered zero, and vertex (0.6 1 -0.05) points to number 6.  

Note: In OpenFOAM® (and C++) counting starts from 0 and not 1! 

In the block part, blocks are defined. The array of numbers in front each block 

shows the block building vertices, e.g. the first block is made of vertices (0 1 

3 2 8 9 11 10).  

After each block, the mesh is defined in every direction. e.g. (25 10 1) shows 

that this block is divided into: 

- 25 parts in x direction  

- 10 parts in y direction  

- 1 part in z direction 

As was explained in tutorial 1, even for 2D simulations the mesh and geometry 
should be 3D, but with one cell in the direction, which is not going to be solved, 
e.g. here number of cells in z direction is one and it’s because of that it’s a 2D 
simulation in x-y plane.  

The last part, simpleGrading(1 1 1) shows the size function, in this case 1 

means there is no change in the cell size from one cell to another 

In the boundary part, each boundary is defined by the vertices it is made of, 

and its type and name are defined. 

Note: For creating a face, the vertices should be chosen clockwise when 
looking at the face from inside of the geometry.  

2. Running simulation 

Before running the simulation, the mesh has to be created. In the previous step, 
the mesh and the geometry data were set. For creating it, the following 
command should be executed from the case main directory (e.g. forwardStep): 

>blockMesh 

After that, the mesh is created in the constant/polyMesh folder. For running the 
simulation, type the solver name form case directory and execute it: 

>foamRun -solver fluid 

Note: The solver can be also defined in the controlDict (which is the case here) 
and then the simulation can be performed simply using foamRun command 
without the solver flag. 
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3. Post-processing 

The mesh is presented in the following way in ParaView, and you can easily 
see the three blocks, which were created. 

 

Mesh generated by blockMesh 

Note: When a cut is created by default in ParaView, the program shows the 
mesh on that plane as a triangular mesh even if it is a hex mesh. In fact, 
ParaView changes the mesh to a triangular mesh for visualization, where every 
square is represented by two triangles. For avoiding this when creating a cut in 
ParaView in the Slice properties window, uncheck “Triangulate the Slice”. 

The simulation results are as follows: 

Time Pressure Velocity Temperature 

0.5 s 

   

1 s 

   

10 s 

   

 

 
  

Pressure, velocity and temperature contours at different time steps 
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Background 

1. Initial and Boundary Conditions 

Before running a numerical simulation, it is crucial to correctly define initial and 
boundary conditions for the problem. Poorly defined boundary conditions can 
lead to non-convergence or incorrect results. Understanding and applying 
these conditions properly ensures that the simulation behaves realistically and 
produces accurate and reliable results. 

Initial conditions define the starting state of the simulation. These values are 
(usually) assigned to the center of every cell in the computational domain before 
the solver begins calculations. As the simulation progresses, the solver updates 
these values at each iteration based on the governing equations. 

Key Points about Initial Conditions: 

• Importance: They provide a reference point for the solver and influence 
how quickly the solution converges. 

• Transient problems: The solution evolves over time from the specified 
initial state. 

• Steady-state problems: The solver will iterate until a stable solution is 
found, regardless of the initial values, but the initial value might affect the 
speed of convergence and solution stability. 

In OpenFOAM®, non-uniform initial conditions can be specified using the 
setFields utility, which allows defining non-uniform distributions of properties in 
the computational domain. This approach is especially useful when different 
regions of the domain require different starting values.  

Boundary conditions define how the simulation domain interacts with its 
surroundings. They specify fixed values or behavior at the domain’s 
boundaries, ensuring that the flow variables (such as velocity, pressure, or 
temperature) remain well-defined at these locations and represent the real 
physics at these boundaries. Types of Boundary Conditions: 

• Dirichlet Boundary Conditions (Fixed Value): the variable (e.g., 
velocity or temperature) is assigned a fixed value at the boundary, e.g. 
specifying a constant temperature at a heated wall. 

• Neumann Boundary Conditions (Fixed Gradient): instead of a fixed 
value, the gradient of the variable is specified at the boundary, e.g. a 
heat flux condition at a surface where the temperature gradient is 
controlled. 

• Mixed Boundary Conditions: a combination of both Dirichlet and 
Neumann conditions, often used for heat transfer and fluid dynamics 
problems. 

• Periodic Boundary Conditions: the solution at one boundary is linked 
to the opposite boundary, creating a repeating or cyclic condition useful 
for modeling infinite domains. 

• Symmetry: used when a boundary behaves like a mirror, preventing 
flow normal to it. 
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In OpenFOAM®, boundary and initial conditions are defined in configuration 
files located in the 0 directory, where users can specify different types of 
conditions depending on the physical problem being modeled. 

Setting appropriate boundary and initial conditions ensures that the simulation 
correctly represents the physical problem and achieves accurate, stable, and 
realistic results. 

2. Courant-Friedrichs-Lewy (CFL) Condition 

When performing numerical simulations, stability is a key concern. The 
Courant-Friedrichs-Lewy (CFL) condition is an essential mathematical criterion 
that ensures numerical schemes remain stable and that information propagates 
correctly within the computational domain. 

Numerical solvers work by advancing the solution through a series of small time 
steps. However, for the solution to be physically meaningful, the information 
carried by waves or particles within the fluid must not move faster than the 
numerical grid can capture it. If this condition is violated, the simulation may 
become unstable, leading to numerical errors or divergence. To achieve this 
CFL condition is used which is mathematically expressed as: 

𝐶𝑜 =  
𝑢∆𝑡

∆𝑥
≤ 1 

Where: 

• u = Velocity magnitude in the considered direction 

• Δt = Simulation time step size 

• Δx = Mesh cell size in the corresponding direction 

How the CFL Condition Affects Simulations: 

• Co > 1: The simulation becomes unstable because the numerical 
scheme cannot properly capture the flow information moving between 
cells. 

• Co ≤ 1: The information is correctly captured within the computational 
grid, ensuring stability and accuracy. 

A finer mesh (smaller Δx) requires a smaller time step (Δt) to maintain stability, 
while higher velocity (larger u) also requires a smaller Δt to satisfy the CFL 
condition. 

One of the most effective ways to determine a suitable Δt is to maintain the 
Courant number close to 1 (to have the biggest stable time step), using the 
maximum velocity in the domain and the smallest cell size. By using this 
approach, the solver will run efficiently while maintaining stability. 
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fluid Solver – shockTube 

Tutorial outline 

Use the “fluid” solver; simulate 0.007 s of flow inside a shock tube, with a mesh 
with 100, 1000 and 10000 cells in one dimension, for initial values 1 bar/0.1 bar 
and 10 bar/0.1 bar. 

Objectives 

• To understand the setFields utility 

• Learn how to specify initial and boundary conditions 

• Investigate effect of grid resolution. 

Data processing 

Import your simulation into ParaView, and compare results.   
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1. Pre-processing 

1.1. Copying tutorial 

Copy the tutorial from the following directory to your working directory 

$FOAM_TUTORIALS/fluid/shockTube 

1.2. Mesh and setting fields 

Looking at the blockMeshDict file (in system directory), it is obvious that it is a 
1D mesh, because of the number of mesh cells in y and z directions is one, and 
also in boundary section, plates vertical to these directions are defined as 

empty. The mesh density can be set in the blocks part by changing x direction 

mesh size (e.g. change it from 1000 to 100 or 10000). 

Another important file is setFieldsDict (in the system directory), which is used 
by the tool setFields for patching (assigning an amount to a region) in the 

simulation. For example, here a pressure of 105 Pa is set as the default value 
for the entire region (in the defaultFieldValues), then half of the region (from 

0 to 5) is patched with a pressure of 104 Pa. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

defaultFieldValues ( volVectorFieldValue U ( 0 0 0 ) volScalarFieldValue T 

348.432 volScalarFieldValue p 100000 ); 

 

regions         ( boxToCell { box ( 0 -1 -1 ) ( 5 1 1 ) ; fieldValues ( 

volScalarFieldValue T 278.746 volScalarFieldValue p 10000 ) ; } ); 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

In the defaultFieldValues, a value is assigned to the whole domain, for 

example here, the velocity has been set everywhere to zero, the temperature 
to 348.432 K, and the pressure to 100000 Pa. In the regions, a specific value 

is patched to a certain region of the domain. In this example the region is 
defined as a cube, by the coordinates of one of its diagonals in boxToCell.  

After choosing the region, the new values are assigned to the parameters (e.g. 
temperature at 278.746 K and pressure at 10000 Pa).  

2. Running simulation 

First the mesh needs to be created: 

>blockMesh 

In order to assign the values which were set in the setFieldDict: 

>setFields 

Then run: 

>foamRun -solver fluid 
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Note: Checking the information printed to the terminal (or log file) you can see 
how by decreasing the cell size (e.g. by increasing the number of cells) or by 
increasing the velocity (changing the pressure values) the Co number is 
increasing at a constant time step. In case the Co is getting bigger than one, 
the deltaT needs to be adopted accordingly to keep the Co below one. 

Note: After running setFields for the first time, the files in the 0 directory are 
overwritten. If the mesh is changed these files are not compatible with the new 
mesh and the simulation will fail. To solve this problem replace the files in the 
0 directory with the files in the 0.orig or the files with suffix “.orig”, e.g. p.orig in 
the 0 directory. In the OpenFOAM® files or directories with suffix “.orig” 
(“original”) usually contain the backup files. If a command changes the original 
files these files can be replaced. 

3. Post-processing 

The simulation results are as follows:  
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Velocities for different configurations along tube at t = 0.007 s 

 

 

 

Velocity along tube axis for 10 bar/0.1bar and 10000 cells case at t = 0.007s 
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Pressures for different configurations along tube at t = 0.007 s 

 

 

Pressure along tube axis for 10 bar/0.1bar and 10000 cells case at 
t = 0.007s 
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Temperature for different configurations along tube at t = 0.007 s 

 

 

Temperature along tube axis for 10 bar/0.1bar and 10000 cells case at 
t = 0.007 s 
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Background 

1. Discretizing general transport equation terms 

Understanding the process of discretization is essential in Computational Fluid 
Dynamics (CFD). Discretization involves breaking down continuous differential 
equations into algebraic equations that can be solved numerically. In 
OpenFOAM®, various discretization schemes are used to approximate different 
terms in the transport equation, which describes how physical quantities (e.g., 
velocity, temperature, or concentration) change over space and time. Below is 
a detailed explanation of how each term in the transport equation is discretized.  

1.1. Time derivative 

The time derivative term represents how a variable evolves over time. This term 
is crucial for transient simulations, where the solution changes over time. 

Discretization of the time derivative such as 
𝜕𝜌𝜑

𝜕𝑡
 of the transport equation is 

performed by integrating it over the control volume of a grid cell. Here, the Euler 
implicit time differencing scheme is explained. It is unconditionally stable, but 
only first order accurate in time. Assuming linear variation of φ within a time 
step gives: 

  ∫
𝜕𝜌𝜑

𝜕𝑡
𝑑𝑉

𝑉

≈
𝜌𝑃

𝑛𝜑𝑃
𝑛 − 𝜌𝑃

0𝜑𝑃
0

∆𝑡
𝑉𝑃           

Where 𝜑𝑛 ≡ 𝜑 (𝑡 + ∆𝑡) stands for the new value at the time step we are solving 

for and 𝜑0 ≡ 𝜑(𝑡) denotes old values from the previous time step. 

Higher-order schemes, such as Crank-Nicolson, offer improved accuracy but 
may introduce oscillations if not applied carefully. 

1.2. Convection term 

The convection term describes the transport of a property due to the motion of 
the fluid. Convection plays a significant role in CFD since it governs how 
momentum, heat, and mass are transported within the fluid domain. 

Discretization of convection terms is performed by integrating over a control 
volume and transforming the volume integral into a surface integral using the 
Gauss's theorem as follows: 

∫ 𝒏 ∙ (𝜌𝜑𝒖)
𝐴

𝑑𝐴 ≈ ∑ 𝒏 ∙ (𝐴𝜌𝒖)𝑓𝜑𝑓 =

𝑓

∑ 𝐹𝜑𝑓

𝑓

      

Where F is the mass flux through the face 𝑓 defined as 𝐹 = 𝒏 ∙ (𝐴𝜌𝒖)𝑓. The 

value 𝜑𝑓 on face f can be evaluated in a variety of ways, which will be covered 

later in section 2. The subscript 𝑓 refers to a given face. 

Choosing the right numerical scheme is essential for balancing accuracy and 
stability in convection-dominated problems. 
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1.3. Diffusion term 

The diffusion term represents the spread of the property due to molecular 
effects such as viscosity or heat conduction. The diffusion term is a second-
order derivative term that requires careful discretization. Discretization of 
diffusion terms is done in a similar way to the convection terms. After integration 
over the control volume, the term is converted into a surface integral: 

∫ 𝒏 ∙ (𝛤𝛻𝜑)
𝐴

𝑑𝐴 = ∑ 𝛤𝑓(𝒏 ∙ 𝛻𝑓𝜑)𝐴𝑓

𝑓

         

Note that the above approximation is only valid if Γ is a scalar. Here,  ∇𝑓𝜑 

denotes the gradient at the face 𝐴 denotes the surface area of the control 
volume and 𝐴𝑓 denotes the area of a face for the control volume. However, it 

does not imply a specific discretization technique. The face normal gradient can 
be approximated using the scheme: 

𝒏 ∙ 𝛻𝑓𝜑 =
𝜑𝑁 − 𝜑𝑃

|𝒅|
        

This approximation is second order accurate when the vector 𝒅 between the 
center of the cell of interest P and the center of a neighboring cell N is 
orthogonal to the face plane, i.e. parallel to A. In the case of non-orthogonal 
meshes, a correction term could be introduced which is evaluated by 
interpolating cell centered gradients obtained from Gauss integration. 

1.4. Source term 

Source terms, such as 𝑆𝜑of the transport equation, can be a general function 

of φ. Before discretization, the term is linearized: 

𝑆𝜑 = 𝜑𝑆𝐼 + 𝑆𝐸         

where 𝑆𝐸 and 𝑆𝐼 may depend on φ. The term is then integrated over a control 
volume as follows: 

∫ 𝑆𝜑𝑑𝑉
𝑉

= 𝑆𝐼𝑉𝑃𝜑𝑃 + 𝑆𝐸𝑉𝑃              

There is some freedom on exactly how a particular source term is linearized. 
When deciding on the form of discretization (e.g. linear, upwind), its interaction 
with other terms in the equation and its influence on boundedness and accuracy 
should be examined.  

2. Discretization Schemes 

Discretization schemes determine how values are interpolated between cell 
centers and faces to compute fluxes accurately. The choice of scheme affects 
solution accuracy, numerical diffusion, and computational stability. Below are 
commonly used schemes and their respective advantages and limitations.  

In general, interpolation needs a flux F through a general face f, and in some 
cases, one or more parameters 𝛾. The face value 𝜑𝑓 can be evaluated from the 
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values in the neighboring cells using a variety of schemes. The flux satisfies 
continuity constraints, which is prerequisite to obtaining the results.  

2.1. First Order Upwind Scheme 

In first order upwind scheme we define φ as follows: 

Note: Here we define two faces, 𝑒 and 𝑤. To obtain flux through faces e and w, 

we need to look its neighbouring values at P/E and W/P respectively. The 
subscripts denote the face at which the face value 𝜑 or the flux F is located at. 

              𝜑𝑒 = 𝜑𝑃          𝑖𝑓, 𝐹𝑒 > 0  
                    𝜑𝑒 = 𝜑𝐸           𝑖𝑓, 𝐹𝑒 < 0          

 

First Order Upwind Scheme 

𝜑𝑤 is also defined similarly (Positive direction is from W to E).  

2.2. Central Differencing Scheme 

Here, we use linear interpolation for computing the cell face values. 

𝜑𝑒 =
𝜑𝐸 + 𝜑𝑃

2
,          𝜑𝑤 =

𝜑𝑃 + 𝜑𝑊

2
           

 

Central Differencing Scheme 

 

2.3. QUICK 

QUICK stands for Quadratic Upwind Interpolation for Convective Kinetics. In 
the QUICK scheme 3 point upstream-weighted quadratic interpolation are used 
for cell face values. 

𝑊ℎ𝑒𝑛 𝐹𝑒 > 0,          𝜑𝑒 =
6

8
𝜑𝑃 +

3

8
𝜑𝐸 −

1

8
𝜑𝑊 
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𝑊ℎ𝑒𝑛 𝐹𝑤 > 0,          𝜑𝑤 =
6

8
𝜑𝑊 +

3

8
𝜑𝑃 −

1

8
𝜑𝑊𝑊 

 

QUICK scheme 

Similar expressions can be obtained for 𝐹𝑒 < 0 and 𝐹𝑤 < 0. 

Now that you know a bit more about discretization schemes, we can move on 
to the tutorial. In this tutorial, the scalarTransportFoam solver is used. More 
explanation of this solver can be found below.  

3. functions solver 

Among foamRun solver modules functions solver, which is specifically 
designed to execute function objects as defined in the system/controlDict or 
system/functions files. Function objects are utilities within OpenFOAM that 
facilitate workflow configurations and enhance simulations by generating 
additional data during runtime or post-processing. By utilizing the functions 
solver module with foamRun, users can automate the execution of these 
function objects, streamlining processes such as data logging, field 
calculations, and custom analyses without the need to run a full simulation. This 
approach optimizes computational resources and simplifies the integration of 
auxiliary calculations into the simulation workflow. 

One of these functions is scalarTransport which resolves a transport equation 
for a passive scalar. The velocity field and boundary condition need to be 
provided by the user. It works by setting the source term in the transport 
equation to zero (see equation below), and then solving the equation.  

𝜕(𝜌𝜑)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝜑𝒖) − 𝛻 ∙ (𝛤𝛻𝜑) = 0 
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functions Solver – shockTube 

Tutorial outline 

Use the functions solver, simulate 5 s of flow inside a shock tube, with 1D mesh 
of 1000 cells (10 m long geometry from -5 m to 5 m). Patch with a scalar of 1 
from -0.5 to 0.5. Simulate following cases: 

• Set U to uniform (0 0 0). Vary diffusion coefficient (low, medium and high 
value).  

• Set the diffusion coefficient to zero and also U to (1 0 0) and run the 
simulation in the case of pure advection using following discretization 
schemes:  

- upwind 

- linear 

- linearUpwind  

- QUICK  

- cubic 

Objectives 

• Understanding different discretization schemes. 

Data processing 

Import your simulation into ParaView, and plot temperature along tube length.   
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1. Pre-processing 

1.1. Compile tutorial 

Create a folder in your working directory: 

>mkdir shockTube 

Copy the following case to the created directory: 

$FOAM_TUTORIALS/fluid/shockTube  

In the 0 directory, create a copy of T.orig and U.orig and rename them to T and 
U respectively. In the constant directory delete physicalProperties file, and in 
the system directory delete all the files except for blockMeshDict and 
setFieldsDict files. 

From the following case:  

$FOAM_TUTORIALS/incompressibleFluid/pitzDailyScalarTransp

ort 

Copy physicalProperties file to the constant folder in the newly created case 
constant folder. Copy controlDict, fvSchemes, fvSolution and functions files 
from the above case system directory to the created case system directory. 

1.2. system directory 

Edit the setFieldsDict, to patch the T field to 1.0 between -0.5 m and 0.5 m and 
to set the U to (0 0 0) for the whole domain. For setting U in the whole domain 
to (1 0 0), just change (0 0 0) to (1 0 0): 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

defaultFieldValues  

(  

volVectorFieldValue U ( 0 0 0 )  

volScalarFieldValue T 0.0  

); 

regions          

(  

boxToCell  

{  

box ( -0.5 -1 -1 ) ( 0.5 1 1 ); 

  

fieldValues  

(  

volScalarFieldValue T 1.0 

);  

}  

); 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

In the controlDict, update the endTime to 5 for 5s of simulation. As it was 

mentioned before, the discretization scheme for each operator of the governing 
equations can be set in fvSchemes. 
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

ddtSchemes 

{ 

    default         Euler; 

} 

 

gradSchemes 

{ 

    default         Gauss linear; 

} 

 

divSchemes 

{ 

    default         none; 

    div(phi,T)      Gauss linearUpwind grad(T); 

} 

 

laplacianSchemes 

{ 

    default         none; 

    laplacian(DT,T) Gauss linear corrected; 

} 

 

interpolationSchemes 

{ 

    default         linear; 

} 

 

snGradSchemes 

{ 

    default         corrected; 

} 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

For each type of operation a default scheme can be set (e.g. for divSchemes 

is set to none, it means no default scheme is set). Also a special type of 

discretization for each element can be assigned (e.g. div(phi,T) it is set to 

linearUpwind). For each element, where a discretization method has not been 

set, the default method will be applied. If the default setting is none, no scheme 

is set for that element and the simulation will crash. 

Note: In fvSchemes, the schemes for the time term of the general transport 
equation are set in ddtSchemes sub-dictionary. divSchemes are responsible for 

the advection term schemes and laplacianSchemes set the diffusion term 

schemes.  

Note: divSchemes should be applied like this: Gauss + scheme. The Gauss 

keyword specifies the standard finite volume discretization of Gaussian 
integration which requires the interpolation of values from cell centers to face 
centers. Therefore, the Gauss entry must be followed by the choice of 

interpolation scheme (www.openfoam.org). 

In the fvSolution file add pressure reference cell number and value to the 
PIMPLE sub-dictionary, it should look like the following: 

PIMPLE 

{ 

    nNonOrthogonalCorrectors 0; 

    pRefCell 0; 

    pRefValue 0; 

} 
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Note: pRefCell and pRefValue are dummy values that solver can start the 
calculations, since there is no pressure field available. 

In the functions file, just keep the line for activating the scalar transport function. 
In the functions file, different functions can be called, in this case the scalar 
transport function is called with using “T” as the property (scalar) to be solved, 
it uses a constant diffusivity model and set the value of it by setting D (in this 
case it is 0.01). 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

#includeFunc scalarTransport(T, diffusivity=constant, D = 0.01) 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

Note: By setting the diffusion coefficient “D” to zero, the case will be switched 
to a pure advection simulation with no diffusion. 

For part two: 

• Set the diffusivity to 0, by setting the D in the functions file 

• Set the velocity field to (1 0 0), either by using setFields utility or simply 
in the 0/U file change the internalField to (1 0 0) 

• Set different schemes in the fvSchemes file, for the div(phi, T) 

2. Running simulation 

>blockMesh 

>setFields 

>foamRun -solver functions 

3. Post-processing 

The simulation results are as follows. 

A. Case with zero velocity (pure diffusion): 

 

Pure diffusion with low diffusivity (0.00001) at t = 5 s 
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Pure diffusion with medium diffusivity (0.01) at t = 5 s 

 

Pure diffusion with high diffusivity (1) at t = 5 s 

B. Case with pure advection (diffusion coefficient = 0): 

 

Scalar T along tube at t = 4 s 
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The cubic scheme predicted an unexpected rise in temperature between 
around 0 to 1 m, which differs hugely from the other schemes. This can be 
explained by looking at the numerical behavior of the cubic scheme. It is 
operated in fourth order accuracy with unbounded solutions, which caused 
another false root solution to be found. Therefore, higher order accuracy does 
not always generate better results! 
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Background 

1. Properties of discretization schemes  

When performing numerical simulations, it is crucial to choose the right 
discretization scheme to ensure physically realistic results. The effectiveness 
of a discretization scheme depends on several key properties, including 
conservativeness, boundedness, and transportiveness. Understanding these 
properties helps in selecting the appropriate scheme for a given problem in 
Computational Fluid Dynamics (CFD). These properties also influence the 
numerical accuracy, stability, and efficiency of the simulation.  

1.1. Conservativeness 

A discretization scheme is conservative if it ensures that the total amount of a 
transported quantity (e.g., mass, momentum, energy) is preserved within the 
solution domain. This property is fundamental for obtaining physically 
meaningful results in fluid dynamics and preventing artificial gain or loss of the 
transported variable. 

To achieve conservativeness, the flux balance across each control volume 
must be maintained. Mathematically, this means: 

• The flux of φ leaving a control volume across a certain face must equal 
the flux entering the adjacent control volume through the same face. 

• The discretization scheme should represent the flux through a common 
face consistently across adjacent control volumes. 

A scheme that violates conservativeness can lead to unphysical results, such 
as artificial creation or loss of mass or energy. Finite volume methods naturally 
ensure conservation by integrating the governing equations over control 
volumes, ensuring that what exits one control volume enters the next.  

1.2. Boundedness 

Most numerical solvers use iterative techniques to obtain the solution at each 
node. The solver starts with an initial guess and updates the values until 
convergence is achieved. To ensure a stable and physically meaningful 
solution, the discretization scheme must satisfy boundedness criteria. 

A bounded solution means that the numerical values of φ remain within 
reasonable limits, avoiding unrealistic oscillations or negative concentrations, 
which would be non-physical. 

The sufficient condition for condition for boundedness is: 

∑|𝑎𝑛𝑏|

|𝑎᾿𝑃|
    {

≤ 1 𝑎𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠                
< 1 𝑎𝑡 𝑜𝑛𝑒 𝑛𝑜𝑑𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡

 

Here 𝑎᾿𝑃 is the net coefficient of the central node P (i.e. 𝑎᾿𝑃 −  𝑆𝑃), 𝑎𝑛𝑏 are the 
coefficient of the neighbouring nodes. If the condition is satisfied, the resulting 
matrix of coefficients is diagonally dominant. We need the net coefficients to be 
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as large as possible; this means that 𝑆𝑃 should be always negative. If this is the 

case, 𝑆𝑃 becomes positive due to the modulus sign and adds to 𝑎𝑃. 

1.3. Transportiveness 

Transportiveness refers to the ability of a discretization scheme to correctly 
account for the dominant transport mechanism in a problem. This is assessed 
using the Peclet number (Pe), which measures the relative strength of 
convection versus diffusion: 

𝑃𝑒 =
𝑁𝑐𝑜𝑛𝑣

𝑁𝑑𝑖𝑓𝑓

=
𝐿𝑈

𝐷
 

Note: L is a characteristic length scale, U is the velocity magnitude, D is a 
characteristic diffusion coefficient. 

The primary goal is to ensure that the transportiveness is borne out of the 
discretization scheme.  

Let us consider the effect at a point P due to two constant sources of φ at nearby 
points W and E on either side, in three cases. 

1. When Pe = 0 (pure diffusion), the contours of φ are circles, as φ is spread 
out evenly in all directions 

2. As Pe increases, the contours become elliptical, as the values of φ are 
influenced by convection 

3. When Pe→∞, the countours become straight lines, since φ are stretched 
out completely and affected only by upstream conditions 

 

4. Transportiveness property 

2. Assessing the general discretization schemes 

It is useful to compare the different types of general discretization schemes 
covered in Tutorial Four based on their conservativeness, boundedness and 
transportiveness properties.  
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Different discretizing schemes assessment 

Scheme 
Conser-
vative 

Bounded Accuracy 
Trans-
portive 

Remarks 

Upwind 

 
Yes 

Unconditionally 
bounded  

First order  Yes  

Include false diffusion if 
the velocity vector is not 

parallel to one of the 
coordinate directions  

Central 
Differencing 

Yes 
Conditionally 

bounded* 
Second order No 

Unrealistic solutions at 
large Pe number 

QUICK Yes 
Unconditionally 

bounded 
Third order Yes 

Less computationally 
stable. Can give small 

undershoots and 
overshoots 

⃰ Pe should be less than 2. 

3. Numerical (false) diffusion 

Numerical diffusion is an artificial diffusion effect that occurs when the flow 
direction is not aligned with the computational grid. It is a numerical artifact that 
introduces additional diffusion into the system and primarily affects convection-
dominated flows with high Peclet numbers (Pe). 

False diffusion is more prominent when using first-order upwind schemes. It 
decreases with finer grids, but using higher-order schemes (e.g., QUICK) is a 
more effective way to reduce it. False diffusion can distort flow structures, 
leading to non-physical results, especially in high-speed flows. Using a high-
resolution grid or aligning the mesh with the flow direction can help mitigate 
numerical diffusion. 

 First-order upwind 
Second-order 

upwind 

 

8 × 8 

  

64 × 64 

  

Numerical diffusion 
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4. Numerical behavior of OpenFOAM® discretization schemes 

The choice of discretization scheme for this tutorial should depend critically on 
the numerical behavior of the scheme. Using higher order schemes, numerical 
diffusion errors can be reduced, however it requires higher computational 
efforts.  

 

Scheme Numerical behavior 

upwind First order, bounded 

linear Second order, unbounded 

linearUpwind First/second order, bounded 

QUICK Second order or higher, bounded 

cubic Fourth order, unbounded 
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functions Solver – circle 

Tutorial outline 

Use the functions solver, do simulate the movement of a circular scalar spot 
region (radius = 1 m) at the middle of a 100 × 100 cell mesh (10 m × 10 m), 
then move it to the right (3 m), to the top (3 m) and diagonally. 

 

Schematic sketch of the problem 

Objectives 

• Choosing the best discretization scheme. 

Data processing 

Examine your simulation in ParaView.   
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1. Pre-processing 

1.1. Compile tutorial 

Create the new case in your working directory like in tutorial four. 

1.2. 0 directory 

To move the circle to right change the internalField to (1 0 0) in the U file 

for setting the velocity field towards the right.  

1.3. system directory 

Modify the blockMeshDict for creating a 2D geometry with 100 × 100 cells 
mesh. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

convertToMeters 1; 

 

vertices 

( 

    (-5 -5 -0.01) 

    (5 -5 -0.01) 

    (5 5 -0.01) 

    (-5 5 -0.01) 

    (-5 -5 0.01) 

    (5 -5 0.01) 

    (5 5 0.01) 

    (-5 5 0.01) 

); 

blocks 

( 

    hex (0 1 2 3 4 5 6 7) (100 100 1) simpleGrading (1 1 1) 

); 

edges 

( 

); 

boundary 

( 

    sides 

    { 

        type patch; 

        faces 

        ( 

            (1 2 6 5) 

            (0 4 7 3) 

            (3 7 6 2) 

            (0 1 5 4) 

        ); 

    } 

    empty 

    { 

        type empty; 

        faces 

        ( 

            (5 6 7 4) 

            (0 3 2 1) 

        ); 

    } 

); 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 
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Choose a discretization scheme based on the results from the previous 
example and set it in the fvSchemes. 

In the setFieldsDict patch a circle to the middle of the geometry using the 
following lines. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

defaultFieldValues (volScalarFieldValue T 0 ); 

 

regions          

(  

cylinderToCell  

{  

 p1 ( 0 0  -1 );  

p2 ( 0 0  1 );  

 radius 0.5;      

 fieldValues  

(  

volScalarFieldValue T 1  

) ;  

}  

); 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

cylinderToCell command is used to patch a cylinder to the region, p1 and p2 

show the two ends of cylinder center line, in the radius the radius is set. 

Check controlDict, in the first part of simulation, where the circle should move 
to the right set the startFrom to startTime and startTime to 0. By a simple 

calculation, it can be seen that the endTime should be 3s (to move the circle 

from center to the right side). Similar calculations need to be done for the two 
other parts, except the startTime is set to the endTime of previous part, and 

new endTime should be that part “simulation time” plus endTime of the previous 

part. 

Note: In the functions file set D to zero (no diffusion!). 

2. Running Simulation 

>blockMesh 

>setFields 

>foamRun -solver functions 

For running further parts (moving the circle to top, and then diagonally), in the 
0 folder in the U file change the internalFiled velocity to (0 1 0) so the circle 

moves up, and to (-1 -1 0) to move the circle diagonally back to the original 
position. 

Note: In the controdDict file, subSolverTime is set to 0 and therefore even if the 
startTime is set to latestTime, the simulation will read the U file from time 0! 

3. Post-processing 

The simulation results are as follows: 
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1 s 2 s 3 s 

4 s 5 s 6 s 

7 s 8 s 9 s 

 

Position of the circle at different time steps 
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Background 

1. Why turbulence modeling? 

Many real-world engineering applications involve turbulent flow, which is a 
highly unsteady and chaotic phenomenon characterized by a wide range of 
swirling motions, called eddies, that exist at different scales. Accurately solving 
turbulent flows requires resolving all these eddies, which would demand an 
enormous amount of computational power and memory. In practical 
applications, such a Direct Numerical Simulation (DNS) is infeasible due to its 
excessive computational cost. 

To overcome this challenge, turbulence models are used to approximate the 
effects of turbulent eddies without resolving them explicitly. These models 
simplify the governing equations of fluid flow while still capturing the essential 
characteristics of turbulence. 

An important principle in turbulence modeling is averaging, which simplifies the 
governing equations of turbulent motion. Due to computational limitations, it is 
not always possible to model turbulent flow at fine spatial and temporal 
resolutions. Turbulence models compensate for this limitation by representing 
the unresolved scales of motion.  

There are different types of turbulence models: 

• RANS-based models: 

o Linear eddy-viscosity models 

▪ Algebraic models 

▪ One and two equation models 

o Non-linear eddy viscosity models and algebraic stress models 

o Reynolds stress transport models 

• Large eddy simulations 

• Detached eddy simulations and other hybrid models 

In this tutorial, RANS-based model is explained in detail. In the next tutorial, 
large eddy simulations (LES) and Smagorinsky-Lilly model will be covered.  

2. RANS-based models 

The governing equations for a Newtonian fluid are: 

• Conservation of mass 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌�̃�) = 0                                                                                       

• Conservation of momentum (Navier-Stokes equation) 

𝜕(𝜌�̃�𝑖)

𝜕𝑡
+ ∇ ∙ (𝜌�̃�𝑖�̃�) = −

𝜕𝑝

𝜕𝑥𝑖

+ ∇ ∙ (𝜇∇�̃�𝑖) + �̃�𝑀𝑖                                



 

 

OpenFOAM® Basic Training 

Tutorial Six 

 

• Conservation of passive scalars (given a scalar �̃� ) 

𝜕(𝜌�̃�)

𝜕𝑡
+ ∇ ∙ (𝜌�̃��̃�) = ∇ ∙ (𝑘∇�̃�) + �̃�𝑒                                                       

Note: suffix notation is used in the conservation of momentum equation for 
simplicity, with 𝑖 = 1 corresponding to the x-direction, 𝑖 = 2 the y-direction and 
𝑖 = 3 the z-direction. 

One of the solutions to the problem is to reduce the number of scales (from 
infinity to 1 or 2) by using the Reynolds decomposition. Any property (whether 
a vector or a scalar) can be written as the sum of an average and a fluctuation, 
i.e. �̃� = Φ + φ where the capital letter denotes the average and the lower case 
letter denotes the fluctuation of the property. Using the Reynolds decomposition 
in the Navier-Stokes equations, we obtain RANS or Reynolds Averaged Navier 
Stokes Equations.  

• Average conservation of mass 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝐔) = 0 

• Average conservation of momentum 

𝜕(𝜌U𝑖)

𝜕𝑡
+ ∇ ∙ (𝜌U𝑖𝐔) = −

𝜕𝑃

𝜕𝑥𝑖

+ ∇ ∙ (𝜇U𝑖) − (
𝜕(𝜌𝑢𝑢𝑖̅̅ ̅̅̅)

𝜕𝑥
+

𝜕(𝜌𝑣𝑢𝑖̅̅ ̅̅̅)

𝜕𝑦
+

𝜕(𝜌𝑤𝑢𝑖̅̅ ̅̅ ̅)

𝜕𝑧
) + S𝑀𝑖         

• Average conservation of passive scalars (given a scalar �̃�) 

𝜕(𝜌E)

𝜕𝑡
+ ∇ ∙ (𝜌EU) = ∇ ∙ (𝑘∇T) − (

𝜕(𝜌𝑢𝑒̅̅ ̅)

𝜕𝑥
+

𝜕(𝜌𝑣𝑒̅̅ ̅)

𝜕𝑦
+

𝜕(𝜌𝑤𝑒̅̅ ̅̅ )

𝜕𝑧
) + S𝑒 

Note: a special property of the Reynolds decomposition is that the average of 
the fluctuating component is identically zero, a fact that is used in the derivation 
of the above equations. 

However, by using the Reynolds decomposition, there are new unknowns that 
were introduced such as the turbulent stresses (𝜌𝑢𝑢̅̅̅̅ , 𝜌𝑣𝑢̅̅̅̅ , 𝜌𝑤𝑢̅̅ ̅̅ , 𝜌𝑢𝑣̅̅̅̅ , 𝜌𝑣𝑣̅̅ ̅, 𝜌𝑤𝑣̅̅ ̅̅ , 

𝜌𝑢𝑤̅̅ ̅̅ , 𝜌𝑣𝑤̅̅ ̅̅ , 𝜌𝑤𝑤̅̅̅̅̅) and turbulent fluxes (𝜌𝑢𝑒̅̅ ̅, 𝜌𝑣𝑒̅̅ ̅, 𝜌𝑤𝑒̅̅ ̅̅ ) and therefore, the RANS 
equations describe an open set of equations (where the over bar denotes an 
average). The need for additional equations to model the new unknowns is 
called Turbulence Modeling. 

We now have 9 additional unknowns (6 Reynolds stresses and 3 turbulent 
fluxes). In total, for the simplest turbulent flow (including the transport of a scalar 
passive scalar, e.g. temperature when heat transfer is involved) there are 14 
unknowns (include u, v, w, p, T)! 

One possible approach to model the additional unknowns is to use the PDEs 
for the turbulent stresses and fluxes as a guide to modeling. The turbulent 
models are as follows, in order of increasing complexity: 

• Algebraic (zero equation) models: mixing length (first order model)  

• One equation models: k‐model, μt‐model (first order model) 

• Two equation models: k‐ε, k‐kl, k‐ω, low Re k‐ε (first order model)  

• Algebraic stress models: ASM (second order model) 
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• Reynolds stress models: RSM (second order model)  

• Zero‐Equation Models 

In OpenFOAM®, there are two simulation types for turbulence flow, RAS and 
LES. As the name suggest, the RAS simulation is based on the RANS-based 
models covered above and will be the sole focus of this tutorial. In the next 
tutorial, we will move on to LES modeling and compare the results generated 
from these two modeling types.  
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incompressibleFluid – pitzDaily 

Tutorial outline 

Use incompressibleFluid solver, run a steady state simulation with following 
turbulence models: 

• kEpsilon (RAS)  

• kOmega (RAS) 

Objectives 

• Understanding turbulence modeling 

• Understanding steady state simulation 

Data processing 

Show the results of U and the turbulent viscosity in two separate contour plots.  
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1. Pre-processing 

1.1. Copying tutorial 

Copy the following tutorial to your working directory: 

$FOAM_TUTORIALS/incompressibleFluid/pitzDaily 

Replace the system directory with the system directory from the following 
tutorial: 

$FOAM_TUTORIALS/incompressibleFluid/pitzDailySteadyExperi

mentalInlet 

Copy the pitzDaily file for the pitzDaily geometry from following directory to your 
system directory: 

$FOAM_TUTORIALS/resources/blockMesh 

1.2. 0 directory 

When a turbulent model is chosen, the value of its constants and its boundary 
values should be set in the appropriate files. For example in kEpsilon model the 
k and epsilon files should be edited. See below for the epsilon file (in the 0 
folder): 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

dimensions      [0 2 -3 0 0 0 0]; 

 

internalField   uniform 14.855; 

 

boundaryField 

{ 

    inlet 

    { 

        type            fixedValue; 

        value           uniform 14.855; 

    } 

    outlet 

    { 

        type            zeroGradient; 

    } 

    upperWall 

    { 

        type            epsilonWallFunction; 

        value           uniform 14.855; 

    } 

    lowerWall 

    { 

        type            epsilonWallFunction; 

        value           uniform 14.855; 

    } 

    frontAndBack 

    { 

        type            empty; 

    } 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 
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Note: Here is a list of files, which should be available at 0 directory and need to 
be modified for each turbulence model: 

• laminar: no file 

• kEpsilon (RAS): k and epsilon 

• kOmega (RAS): k and omega 

• LRR (RAS): k, epsilon and R 

• Smagorinsky (LES): s 

• kEqn (LES): k and s  

• SpalartAllmaras (LES): nuSgs and nuTilda 

Some files are available, e.g. epsilon, k and nuTilda, some files should be 
created by the user, e.g. R, nuSgs. Templates for these files can be also found 
in the examples of older versions of OpenFOAM®, e.g. 1.7.1. 

1.3. constant directory 

In the momentumTransport file, the simulationType can be set as either RAS, 

LES or laminar. Then the corresponding sub-dictionary of the chosen 

simulation type needs to be defined. In this case, the sub-dictionary for RAS 
contains information about the chosen RAS model (kEpsilon), and the status of 
turbulence and printCoeffs are turned to on. Setting the turbulence to 

off/false will turn the turbulence model off and perform a laminar simulation. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

simulationType        RAS; 

 

RAS 

{ 

     model         kEpsilon; 

 

     turbulence       on; 

 

     printCoeffs      on; 

} 

 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

Note: For Boolean inputs in OpenFOAM either on/off, 1/0 or true/false can be 
used. 

1.4. system directory 

Running simulations in steady state mode, the endTime in the controlDict file 

corresponds to maximum number of iterations (e.g. 1000) instead of time, 
deltaT is the iterator and should be 1, because it is the amount of increase in 

the iteration number and writeInterval will show the frequency of saving 

data (e.g. 50 means each 50 iterations a saving will be done). 
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In the fvSchemes files the ddtSchemes is set to steadyState which will set the 

time derivative part of conservation equations to zero which is compatible with 
the steady state assumption. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

ddtSchemes 

{ 

      default          steadyState; 

} 

 

gradSchemes 

{ 

      default          Gauss linear; 

} 

 

divSchemes 

{ 

      default          none; 

      div(phi,U)       bounded Gauss Upwind; 

      div(phi,k)       bounded Gauss Upwind; 

      div(phi,epsilon) bounded Gauss Upwind; 

      div(phi,R)       bounded Gauss Upwind; 

      div(R)           Gauss linear; 

      div(phi,nuTilda) bounded Gauss Upwind; 

 

      div((nuEff*dev2(T(grad(U)))))  Gauss linear; 

} 

 

laplacianSchemes 

{ 

      default      Gauss linear corrected; 

} 

 

interpolationSchemes 

{ 

      default      linear; 

} 

 

snGradSchemes 

{ 

      default      corrected; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

In case we are solving for property such as omega and it is not defined in the 
schemes and there is no default schemes defined, it should be add to the 
relevant schemes section, e.g. to the divSchemes (div(phi,omega)). Also, 
fvSolution needs to be adopted based on the new parameters, e.g. omega. 

Note: In the fvSolution the solver type and settings need to be defined or be 
added to the others, e.g. for omega “(U|k|epsilon|R|nuTilda|omega)”). 

2. Running simulation 

>blockMesh -dict system/pitzDaily 

Note: The default dictionary file for blockMesh is blockMeshDict in the system 
directory. It is possible to use a different dictionary file by using the flag “-dict” 
and the address of the file (dictionary), in this case system/pitzDaily. 

>foamRun -solver incompressibleFluid 
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Note: When the solution converges, “SIMPLE solution converged in … 

iterations” message will be displayed in the Shell window. If nothing happens 

and you do not see a message after a while (this is not the case in here, it 
converges after a short time), then you should check the residuals which are 
displayed in the Shell window manually (you should check initial residual 

values, it shows the difference between this iteration and the last one), if all of 
the Initial residual (see below) values are close to amounts you have set 

in the fvSolution then you can stop simulation (ctrl+c).    

Note: You can use bash script and gnuPlot for extracting the residual data from 
log files and plotting them. For saving the simulation output to a log file use the 
following command for running the simulation and the terminal output will be 
saved to the log file (log file can be viewed using less - check Appendix A). 

>foamRun -solver incompressibleFluid > log 

Time = 795s 

 

smoothSolver:  Solving for Ux, Initial residual = 0.00013831, Final residual = 

9.28001e-06, No Iterations 6 

smoothSolver:  Solving for Uy, Initial residual = 0.000977894, Final residual = 

6.73868e-05, No Iterations 6 

GAMG:  Solving for p, Initial residual = 0.00192871, Final residual = 

0.000174838, No Iterations 7 

time step continuity errors : sum local = 0.000840075, global = 6.13868e-05, 

cumulative = -0.193739 

smoothSolver:  Solving for epsilon, Initial residual = 0.000175322, Final 

residual = 1.138e-05, No Iterations 2 

smoothSolver:  Solving for k, Initial residual = 0.000404928, Final residual = 

2.99083e-05, No Iterations 2 

ExecutionTime = 56.7 s  ClockTime = 57 s 

 

SIMPLE solution converged in 795 iterations 

3. Post-processing 

The simulation results are as follows (all simulations scaled to the same range): 

RAS 
model 

Velocity magnitude Turbulent viscosity 

kEpsilon 
  

kOmega 
  

 
  

Velocity magnitude and turbulent viscosity for different RAS models 
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Background 

1. Large eddy simulation (LES) 

In Large Eddy Simulation (LES), turbulence is modeled by distinguishing 
between large-scale eddies and small-scale eddies within a fluid flow. The 
fundamental idea behind LES is that large eddies are dependent on the 
geometry and flow conditions, whereas small eddies exhibit more universal 
behavior. This assumption allows for a computationally efficient approach to 
turbulence modeling by resolving only the large eddies while modeling the 
small-scale eddies using Sub-Grid Scale (SGS) models. 

Compared to Reynolds-Averaged Navier-Stokes (RANS) models, which 
completely model turbulence effects, LES provides a higher-fidelity simulation 
since large eddies are explicitly resolved rather than approximated. However, 
LES requires higher computational resources than RANS but significantly less 
than Direct Numerical Simulation (DNS), making it an effective trade-off 
between accuracy and computational feasibility. 

Mathematically, it is like separating the velocity field into a resolved and sub-
grid part using a filter function. The resolved part of the field represents the 
large eddies, while the sub grid part of the velocity represents the small eddies 
whose effect on the resolved field is included through the sub grid-scale model. 
Formally, one may think of filtering as the convolution of a function with a 
filtering kernel 𝐺: 

�̅�𝑖(�⃗�) = ∫ 𝐺(�⃗� − 𝜉)𝑢(𝜉)𝑑𝜉 

resulting in 

𝑢𝑖 = �̅�𝑖 + 𝑢,
𝑖 

Where �̅�𝑖 is the resolvable scale part and 𝑢,
𝑖 is the subgrid-scale part. However, 

most practical (and commercial) implementations of LES use the grid itself as 
the filter and perform no explicit filtering. The filtered equations are developed 
from the incompressible Navier-Stokes equations of motion: 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑗

(𝜐
𝜕𝑢𝑖

𝜕𝑥𝑗

) 

Substituting in the decomposition 𝑢𝑖 = �̅�𝑖 + 𝑢,
𝑖 and p = p̅ + p, and then filtering 

the resulting equation gives the equations of motion for the resolved field: 

𝜕�̅�𝑖

𝜕𝑡
+ �̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗

= −
1

𝜌

𝜕�̅�

𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑗

(𝜐
𝜕�̅�𝑖

𝜕𝑥𝑗

) +
1

𝜌

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗

  

We have assumed that the filtering operation and the differentiation operation 
commute, which is not generally the case. It is thought that the errors 
associated with this assumption are usually small, though filters that commute 
with differentiation have been developed. The extra term 𝜕𝜏𝑖𝑗/𝜕𝑥𝑗 arises from 

the non-linear advection terms, because: 

𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

≠ �̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗
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and hence 

𝜏𝑖𝑗 = �̅�𝑖�̅�𝑗 − 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ 

Similar equations can be derived for the sub grid-scale field. Sub grid-scale 
turbulence models usually employ the Boussinesq hypothesis, and seek to 
calculate (the deviatoric part of) the SGS stress using:  

𝜏𝑖𝑗 −
1

3
τ𝑘𝑘δ𝑖𝑗 = −2μ𝑡𝑆�̅�𝑗 

where 𝑆�̅�𝑗 is the rate-of-strain tensor for the resolved scale defined by  

𝑆�̅�𝑗 =
1

2
(

𝜕�̅�𝑖

𝜕𝑥𝑗

+
𝜕�̅�𝑗

𝜕𝑥𝑖

) 

and μ𝑡  is the subgrid-scale turbulent viscosity. Substituting into the filtered 
Navier-Stokes equations, we then have: 

𝜕�̅�𝑖

𝜕𝑡
+ �̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗

= −
1

𝜌

𝜕�̅�

𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑗

([𝜐 + 𝜐𝑡]
𝜕�̅�𝑖

𝜕𝑥𝑗

) 

where we have used the incompressibility constraint to simplify the equation 
and the pressure is now modified to include the trace term 𝜏𝑘𝑘𝛿𝑖𝑗/3. 

2. k-Eqn model 

The k-equation (kEqn) Large Eddy Simulation (LES) turbulence model is 
designed to capture sub-grid scale (SGS) turbulence effects by solving a 
transport equation for the SGS turbulence kinetic energy (k). This approach 
enhances the accuracy of simulations involving complex turbulent structures. 

The governing equation for the SGS turbulence kinetic energy k in the kEqn 
LES model is: 

𝜕ρk

𝜕𝑡
+ 𝛻 ·  (𝜌 𝑢 𝑘) = 𝛻 ·  (𝜌 𝐷ₖ 𝛻𝑘) +  𝜌𝐺 −

2

3
𝜌𝑘 (𝛻 ·  𝑢) −  

𝐶ₑ 𝜌 𝑘1.5

Δ
+ Sₖ 

Where G is the production term of turbulence kinetic energy, Cₑ is the model 
coefficient (default value: 1.048), Δ is the filter width and Sₖ is the source term. 

This equation accounts for the transport, production, and dissipation of SGS 
turbulence kinetic energy, providing a comprehensive representation of 
turbulent flow dynamics. 

3. Smagorinsky-Lilly model 

One of the most widely used SGS models is the Smagorinsky-Lilly model, which 
provides a simple way to estimate the sub-grid scale eddy viscosity: 

𝜏𝑖𝑗 −
1

3
τ𝑘𝑘δ𝑖𝑗 = −2(C𝑠∆)2|𝑆̅|S𝑖𝑗 

In the Smagorinsky-Lilly model, the eddy viscosity is modeled by 
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𝜇𝑠𝑔𝑠 = ρ(C𝑠∆)2|𝑆̅| 

Where the filter width is usually taken to be 

∆= (𝑉𝑜𝑙𝑢𝑚𝑒)1/3 

and 

𝑆̅ = √2𝑆𝑖𝑗𝑆𝑖𝑗 

The effective viscosity is calculated from  

𝜇𝑒𝑓𝑓 = 𝜇𝑚𝑜𝑙 + 𝜇𝑠𝑔𝑠 

The Smagorinsky constant usually has the value: 𝐶𝑠 = 0.1 − 0.2 

Physical Interpretation 

• The Smagorinsky model assumes that the energy cascade in turbulence 
is local, meaning small eddies interact mostly with nearby structures. 

• The filter width Δ\Delta determines the size of the smallest resolved 
structures. 

• The Smagorinsky constant Cs is a tunable parameter that affects model 
accuracy.  

o Higher Cs leads to stronger damping of small eddies. 

o A lower Cs may lead to unresolved turbulence effects. 

Smagorinsky model is simple and computationally efficient, while providing 
reasonable approximations for turbulent energy dissipation, it works well for 
high-Reynolds-number flows. On the other hand, the model does not account 
for near-wall effects accurately, leading to overdamping of turbulence in 
boundary layers and the constant Cs needs tuning for different flow conditions. 
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incompressibleFluid – pitzDaily 

Tutorial outline 

Use the incompressibleFluid solver, run a backward facing step case for 0.2 s 
with different turbulence models: 

• Smagorinsky (LES) 

• kEqn (LES) 

• kEpsilon (RAS) 

Objectives 

• Understanding turbulence models 

• Transient vs steady state simulation 

• Finding appropriate turbulence model 

Data processing 

Display the results of U and the turbulent viscosity in two separate contour plots 
at three different time steps. Compare with steady state simulation (Tutorial 
Six).   
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1. Pre-processing 

1.1. Copying tutorial 

Copy the tutorial from the following directory to your working directory: 

$FOAM_TUTORIALS/incompressibleFluid/pitzDailyLESDeveloped

Inlet 

Replace 0 directory with 0 directory from the following tutorial: 

$FOAM_TUTORIALS/incompressibleFluid/pitzDaily 

1.2. 0 directory 

Set the proper turbulence model initial and boundary conditions and values.  

Note: For different turbulent models, different files should be modified (check 
Tutorial Six). 

For kEpsilon model, the epsilon file need to be added and on the walls, for all 
three properties: k, epsilon and nut, the wall-functions should be applied (based 
on the y+ value) and proper initial values to be set. For more information: 
https://www.openfoam.com/documentation/guides/latest/doc/guide-
turbulence.html 

1.3. constant directory 

As mentioned in Tutorial Six, in momentumTransport the turbulent model type 
has to be set. The simulationType can be changed to LES or RAS. Depending 

on which type is selected, the corresponding sub-dictionary needs to be 
specified. Below is the momentumTransport file for the kEqn model, which is 
an LES model.  

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

simulationType  LES; 

 

LES 

{ 

LESModel        kEqn; 

turbulence      on; 

printCoeffs     on; 

delta           cubeRootVol; 

 

dynamicKEqnCoeffs 

{ 

    filter      simple; 

} 

 

cubeRootVolCoeffs 

{ 

    deltaCoeff      1; 

} 

 

PrandtlCoeffs 

{ 

    delta           cubeRootVol; 

    cubeRootVolCoeffs 

    { 

https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence.html
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        deltaCoeff      1; 

    } 

 

    smoothCoeffs 

    { 

        delta           cubeRootVol; 

        cubeRootVolCoeffs 

        { 

            deltaCoeff      1; 

        } 

 

        maxDeltaRatio   1.1; 

    } 

 

    Cdelta          0.158; 

} 

 

vanDriestCoeffs 

{ 

    delta           cubeRootVol; 

    cubeRootVolCoeffs 

    { 

        deltaCoeff      1; 

    } 

 

    smoothCoeffs 

    { 

        delta           cubeRootVol; 

        cubeRootVolCoeffs 

        { 

            deltaCoeff      1; 

        } 

 

        maxDeltaRatio   1.1; 

    } 

 

    Aplus           26; 

    Cdelta          0.158; 

} 

 

smoothCoeffs 

{ 

    delta           cubeRootVol; 

    cubeRootVolCoeffs 

    { 

        deltaCoeff      1; 

    } 

 

    maxDeltaRatio   1.1; 

} 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

Note: For Smagorinsky, you can find the sample dictionary, including the 
relevant settings in the following: 

$FOAM_TUTORIALS/multiphaseEuler/LBend/constant/momentumTr

asport.gas 

2. Running simulation 

>blockMesh 

>foamRun -solver incompressibleFluid 
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3. Post-processing 

The simulation results are as follows: 

For the kEpsilon model after 0.2 s the results are similar to the steady state 
simulation. Therefore, it can be assumed it has reached the steady state. Other 
models do not have a steady situation and are fluctuating all the time, so they 
require averaging for obtaining steady state results. 

kEpsilon and other RAS models use averaging to obtain the turbulence values, 
but LES does not include any averaging by default. Therefore, LES simulations 
should use a higher grid resolution (smaller cells) and smaller time steps (for 
reasonable Co number). Contour plots or other LES results should be 
presented time averaged over reasonable number of time steps (not done in 
this tutorial).  
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Velocity magnitude Turbulent viscosity 

Smagorinsky 

0.01 s 

  

0.05 s 

  

0.2 s 

  

 

  

kEqn 

0.01 s 

  

0.05 s 

  

0.2 s 

  

 

  

kEpsilon 

0.01 s 

  

0.05 s 

  

0.2 s 

  

 

  

Comparison of different turbulent models for transient simulation. 
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Background 

1. Multiphase flow 

Multiphase flow refers to the simultaneous movement of two or more different 
phases (solid, liquid, or gas). Each phase may contain one or more chemical 
components. The common types of multiphase flows include: 

• Gas-liquid flows (e.g., air bubbles in water, boiling liquids) 

• Gas-solid flows (e.g., pneumatic transport, fluidized beds) 

• Liquid-solid flows (e.g., sediment transport, slurry flows) 

• Liquid-liquid flows (e.g., oil-water mixtures) 

• Three-phase flows (e.g., water, gas, and solid mixtures in oil pipelines) 

Multiphase flow can be further classified based on the flow regime: 

• Separated flow: Distinct interfaces between phases (e.g., water flowing 
under oil). 

• Dispersed flow: One phase exists as discrete particles or droplets within 
another continuous phase (e.g., bubbles in water, oil droplets in water). 

• Mixed flow: A combination of separated and dispersed flow regions. 

Multiphase flow is found in numerous applications, including chemical reactors 
(bubble columns, distillation towers), oil and gas industries (flow through 
pipelines, separation processes), environmental science (rain formation, 
erosion due to sediment transport) and power plants (boiling in nuclear 
reactors, cooling systems). Understanding and modeling multiphase flow is 
crucial for improving efficiency, design optimization, and operational safety in 
these applications. 

2. Modeling approaches 

Modeling of multiphase flow can be extremely complex, due to possible flow 
regime transitions. To simplify the matter, different modeling approaches can 
be adopted and they generally fall into two categories: lagrangian and Eulerian. 
In the case of dispersed configuration, Lagrangian approach is more suitable. 
This involves tracking individual point particles during its movement. The other 
approach is the Eulerian approach, which observes fluid behavior in a given 
control volume. Below we will cover some common modeling approaches of 
multiphase flow. 

2.1. Euler-Euler approach (Multi-fluid model) 

All phases are treated as continuous in the Euler-Euler approach. This 
approach is suitable for separated flows where each phase behaves as a 
continuum, rather than being discrete. The phases interact through the drag 
and lift forces acting between them, as well as through heat and mass transfer. 
The Euler-Euler approach is also capable of modeling dispersed flow, where 
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we are interested in the overall motion of particles rather than tracking individual 
particles.  

In the Euler-Euler approach, we introduce the concept of phasic volume 
fractions. These fractions are assumed continuous functions of space and time, 
with their sum equal to one. For each phase, a set of conservation equations 
for mass, momentum and energy is solved individually; in addition, a transport 
equation for the volume fraction is solved. Coupling between the phases is 
achieved through shared pressure and interphase exchange coefficients. 

2.2. Eddy Interaction Model 

In the Eddy Interaction Model, each particle interacts with a succession of 
eddies. The fluid motion of the particle is characterized by three parameters: i) 
eddy velocity, ii) eddy lifetime, iii) eddy length. It follows the particle-tracking 
Lagrangian approach.  

The eddy lifetime (𝑡𝑒) and eddy length scale (𝑙𝑒) are estimated from the local 
turbulence properties. From the length scale and the particle velocity, one can 
calculate the eddy transit time (𝑡𝑐), i.e. the time taken for a particle to cross the 
eddy. The particle is then assumed to interact with the eddy for a time, which is 
the minimum of the eddy lifetime and the eddy transit time.  

𝑡𝑖𝑛𝑡 = min(𝑡𝑒, 𝑡𝑐) 

During that interaction, the fluid fluctuating velocity is kept constant and the 
discrete particle is moved with respect to its equation of motion. Then a new 
fluctuating fluid velocity is sampled and the process is repeated.  

2.3. Volume of Fluid (VOF) method  

VOF method belongs to the Eulerian class of modeling approach. It is based 
on the idea of fraction function C. Fraction function indicates whether a 
chosen phase is present inside the control volume. If C=1, the control volume 
is completely filled with the chosen phase; if C=0, the control volume is filled 
with a different phase. A value between 0 and 1 indicates that the interface 
between phases is present inside the control volume. It is important in VOF 
method that the flow domain is modeled on a fine grid, since the interface 
should be resolved.  

The focus of the VOF method is to track the interface between phases. To do 
this, the transport equations are solved for mixture properties, assuming that all 
field variables are shared between the phases. Then an advection equation for 
the fraction function C is solved. The discretization of the fraction function 
equation is crucial for obtaining a sharp interface. 
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incompressibleVoF – damBreak 

Tutorial outline 

Use the incompressibleVoF solver to simulate breaking of a dam for 2s. 

Objectives 

• Understanding how to set viscosity, surface tension and density for two 
phases 

Data processing 

See the results in ParaView.   
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1. Pre-processing 

1.1. Copying tutorial 

Copy tutorial from the following folder to your working directory: 

$FOAM_TUTORIALS/incompressibleVoF/damBreak 

1.2. 0 directory 

In the 0 directory, in the alpha.water.orig and p_rgh files, the initial values and 
boundary conditions for water phase and pressure are set. Copy 
alpha.water.orig to alpha.water (remember: the *.orig files are back up files, and 
solvers do not use them). E.g. in alpha.water: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

dimensions      []; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

    #includeEtc  “caseDicts/setConstrainTypes” 

 

    wall 

    { 

        type            zeroGradient; 

    } 

 

    atmosphere 

    { 

        type            inletOutlet; 

        inletValue      uniform 0; 

        value           uniform 0; 

    } 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

#includeEtc includes the etc folder in the OpenFOAM installation directory 

and the path “caseDicts/setConstrainTypes” instruct it to include the 

boundaries in this file also here. In this case the empty boundary is used for 
this tutorial. 
Checking the blockMeshDict file there is no boundary named wall, the wall in 

the boundaryField section of files in the 0 is for using the same boundary 

condition for the boundaries which have type wall. 

Note: If in the files in 0 directory some not used boundaries are defined, as far 
as their syntax is correct, OpenFOAM will ignore them, so you don’t need to 
remove them! 

Note: In the dimensions section [] is equal to [0 0 0 0 0 0 0] and it means 

it is a dimensionless parameter. 

Note: The inletOutlet and the outletInlet boundary conditions are used 

when the flow direction is not known. In fact, these are derived types and are a 
combination of two different boundary types.  
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- inletOutlet: When the flux direction is toward the outside of the 

domain, it works like a zeroGradient boundary condition and when the 
flux is toward inside the domain it is like a fixedValue boundary condition.  

- outletInlet: This is the other way around, if the flux direction is toward 

outside the domain, it works like a fixedValue boundary condition and 
when the flux is toward inside the domain, it is like a zeroGradient 
boundary condition.  

E.g. if the velocity field outlet is set as inletOutlet and the inletValue is set 

to (0 0 0), it avoids backflow at the outlet! The “inletValue” or 

“outletValue” are values for fixedValue type of these boundary conditions 

and “value” is a dummy entery for OpenFOAM® for finding the variable type. 

Using (0 0 0), OpenFOAM® understands that the variable is a vector. 

1.3. constant directory 

In the file phaseProperties, there is the list of phases in the simulation (in this 
case air and water): 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

Phases          (water air); 

 

sigma           0.07; 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

and sigma is the surface tension between two phases, in this example it is the 

surface tension between air and water. 

For each phase, there is a dedicated physicalProperties.fileName file, in which 
the properties of the relevant phase can be set. E.g. the 
physicalProperties.water file looks as following: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

viscosityModel  constant; 

nu              1e-06; 

rho             1000; 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

In both phases the coefficients for different models of viscosity are given, e.g. 
nu and rho. Depending on which model is selected, the corresponding 

coefficients are read. In this simulation, the selected model is constant 

(representing Newtonian model), therefore only the nu coefficient is needed. 

Checking the g file, the gravitational field and its direction are defined, it is 
9.81 m/s2 in the negative y direction. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

dimensions      [0 1 -2 0 0 0 0]; 

value           ( 0 -9.81 0 ); 
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

1.4. system directory 

In the controlDict change the endTime to 2, for 2s of simulation. 

2. Running simulation 

>blockMesh 

>setFields 

>foamRun -solver incompressibleVoF 

3. Post-processing 

The simulation results are as follows (these are not the results for the original 
mesh, but a 2x refined mesh):  
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0.0 s 

 

0.05 s 

 

0.1 s 

 

0.30 s 

 

0.35 s 

 

0.4 s 

 

0.70 s 

 

1.0 s 

 

2.0 s 

 

Contours of the water volume fraction at different time steps 
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Background 

1. Parallel computing 

Modern Computational Fluid Dynamics (CFD) problems often involve complex 
geometries, turbulence, multiphase flows, and chemical reactions, making 
simulations computationally expensive. Parallel computing reduces 
computation time by distributing the workload across multiple processors, 
enabling simulations that would otherwise be infeasible on a single machine. 

Parallel computing involves dividing the computational domain into smaller sub-
domains, which are assigned to different processors. This step is known as 
domain decomposition. These processors simultaneously perform 
calculations and communicate with each other to synchronize data exchange. 
This approach significantly reduces computational time, making it essential for 
large-scale simulations in engineering and scientific research. 

Parallel computing can be carried out in two ways. One is done on a single 
computer with multiple internal processors, known as a Shared Memory 
Multiprocessor. The other way is achieved through a series of computers 
interconnected by a network, known as a Distributed Memory Multicomputer.  

1.1. Shared versus distributed memory 

 
Shared Memory 
Multiprocessor 

Distributed Memory 
Multicomputer 

Memory 
Data is saved in a global 

memory that can be accessed by 
all processors 

Each computer has a local 
memory and a processor can only 

access its local memory 

Data transfer 
between 

processors 

The sender processor simply 
needs to write the data in a 

global variable and the receiver 
can read it 

Message is sent explicitly from 
one computer to another using a 

message passing library, e.g. 
Message Passing Interface (MPI) 

In OpenFOAM® the application of parallel computing can be executed using the 
decomposePar command. This allows the solver to be run on multiple 
processors. The workflow of parallel computation in OpenFOAM® is 
summarized below: 

• Division of the mesh into sub-domains 

• Running of the solver in parallel 

• Reconstruction of the meshes and connecting the results. 

2. Introduction to compressible flow 

Until now, we have primarily considered incompressible fluid flows, where the 
density remains constant. However, in many real-world scenarios, fluid density 
varies significantly due to changes in pressure and temperature. This variation 
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in density makes the flow compressible, requiring specialized solvers and 
numerical methods. 

A classic example of compressible flow is the flow through a converging-
diverging nozzle, where fluid accelerates to supersonic speeds. Compressibility 
becomes dominant in flows when the Mach number is greater than about 0.3. 
The Mach number is defined as follows: 

𝑀𝑎 =
𝑢

𝑐
=

𝑙𝑜𝑐𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑
 

Flow Classification Based on Mach Number: 

• Subsonic Flow (Ma < 0.3): Flow is nearly incompressible, and density 
changes are negligible. 

• Transonic Flow (0.3 < Ma < 1.0): Density variations begin to affect flow 
behavior. 

• Supersonic Flow (Ma > 1.0): Shock waves and expansion waves 
appear, requiring advanced solvers. 

• Hypersonic Flow (Ma > 5.0): Extremely high-speed flow, where thermal 
and chemical effects become significant. 

When a fluid flow is compressible, temperature and pressure are affected 
strongly by variations in density. It is therefore important to consider the linkage 
between pressure, temperature and density in compressible flow, usually by 
applying an equation of state from thermodynamics, e.g. the ideal gas equation. 
More complex real-gas equations of state (e.g., Peng-Robinson, Van der 
Waals) may be required for high-pressure or reactive flows. 

3. Compressible flow solvers 

There are two general types of solution schemes for compressible flow: 
pressure-based and density-based.  

3.1. Pressure-based solvers 

This type of solver was historically derived from the solution approach used on 
incompressible flows. They solve for the primitive variables. The discretized 
momentum and energy equations are used to update velocities and energy. 
The pressure is obtained by applying a pressure-correction algorithm on the 
continuity and momentum equations. Density is then calculated from the 
equation of state. 

3.2. Density-based solvers 

Density-based solvers are suitable for solving the conserved variables. Similar 
to pressure-based solvers, the conversed velocity and energy terms are 
updated from the discretized momentum and energy equations. We can then 
solve for density from the continuity equation, afterwards we use the equation 
of state to update the pressure. 



 

 

OpenFOAM® Basic Training 

Tutorial Nine 

 

In general, density based solvers are more suitable for high-speed 
compressible flows with shocks. This is because density based solvers solve 
for conserved quantities across the shock, so the discontinuities will not affect 
the results.  
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compressibleVoF – depthCharge3D 

Tutorial outline 

Use the compressibleVoF solver, simulate the example case for 0.5 s. 

Objectives 

• Understanding the difference between incompressible and compressible 
solvers 

• Understanding parallel processing and different discretization methods 

Data processing 

Investigate the results in ParaView.  
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1. Pre-processing 

1.1. Copying tutorial 

Copy the tutorial from following directory to your working directory: 

$FOAM_TUTORIALS/compressibleVoF/depthCharge3D 

1.2. 0 directory 

In the 0 directory copy the alpha.water.orig, p.orig, p_rgh.orig and T.orig files to 
alpha.water, p, p_rgh and T respectively.  

Note: You can also skip copying the *.orig files, since running the setFields will 
do it for you. 

1.3. constant directory 

Phases and common physical properties of the two phases are set in the 
phaseProperties file.  

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

phases (water air); 

 

sigma           0.07; 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

Individual phase properties are set in physicalProperties.phase files, e.g. 
physicalProperties.air. 

1.4. system directory 

The decomposeParDict file includes the parallel settings, such as the number 
of domains (partitions) and also how the domain is going to be divided into 
these subdomains for parallel processing. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

numberOfSubdomains 4; 

 

method          hierarchical; 

 

simpleCoeffs 

{ 

    n               ( 1 4 1 ); 

} 

 

hierarchicalCoeffs 

{ 

    n               ( 1 4 1 ); 

    order           xyz; 

} 

 

manualCoeffs 

{ 

    dataFile        ""; 

} 
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distributed     no; 

 

roots           ( ); 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

numberOfSubdomains should be equal to the number of cores used. method 

should show the method to be used. In the above example, the case is 
simulated with the hierarchical method and 4 processors. 

If the simple method is being used, the parameter n must be changed 

accordingly. The three numbers (1 4 1) indicate the number of pieces the 

mesh is split into in the x, y and z directions, respectively. Their multiplication 
result should be equal to numberOfSubdomains.  

If the hierarchical method is being used, these parameters and the order in 

which the mesh should be split up in each direction should be provided.  

If the scotch method is being used, then no user-supplied parameters are 

necessary except for the number of subdomains. 

Note: In order to check the quality of the mesh, the checkMesh tool can be used 
(run it from main case directory). If the message “Mesh OK” is displayed – the 

mesh is fine and no corrections need to be done. If the mesh fails in one or 
more tests, try to recreate or refine the mesh for a better mesh quality (less non-
orthogonally and skewness).  

If non-orthogonal cells exist in a mesh, another option is using non-orthogonal 
corrections in the fvSolution file in the algorithm sub-dictionary (e.g. PIMPLE or 

PISO). Usually using 1 or 2 as nNonOrthogonalCorrectors is enough. 

2. Running simulation 

>blockMesh 

>setFields 

For running the simulation in parallel mode the computing domain needs to be 
divided into subdomains and a core should be assigned to each subdomain. 
This is done by following command: 

>decomposePar 

This decomposes the mesh according to the supplied instructions. One 
possible source of error is the product of the parameters in n does not match 

up to the number of the subdomains.  This appears for the simple and 
hierarchical methods.  

After executing this command four new directories will be made in the 
simulation directory (processor0, processor1, processor2 processor3), and 
each subdomain calculation will be saved in the respective processor directory. 

Note: When the domain is divided to subdomains in parallel processing new 
boundaries are defined. The data should be exchanged with the neighbor 
boundary, which it is connected to in the main domain. 
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>mpirun -np <No of cores> solver –parallel > log 

<No of cores> is the number of cores being used. solver is the solver for 

this simulation. For example, if 4 cores are desired, and the solver is 

compressibleInterFoam following command is used: 

>mpirun -np 4 foamRun -solver compressibleVoF -parallel > 

log 

> log is the filename for saving the simulation status data, instead of printing 

them to the screen. For checking the last information which is written to this file 
the following command can be used during the simulation running: 

>tail –f  log 

Note: Before running any simulation, it is important to run the top command 
(type the ‘top’ command in the terminal), to check the number of cores currently 
used on the machine. Check the load average. This is on the first line and 
shows the average number of cores being used. There are three numbers 
displayed, showing the load averages across three different time scales (one, 
five and 15 minute respectively).  

Add the number of cores you plan to use to this number – and you will get the 
expected load average during your simulation. This number should be less than 
the total number of cores in the machine – or the simulation will be slowed or 
the machine will crash (if you run out of memory). If you are running on a multi 
user server it is recommended to leave at least a few cores free, to allow for 
any fluctuations in the machine load. 

Note: top command execution can be interrupted by typing q (or ctrl+c) 

The simulation can take several hours, depending on the size of the mesh and 
time step size. 

3. Post-processing 

For exporting data for post processing, at first all the processors data should be 
put together and a single combined directory for each time step was created. 
By executing the following command all the cores data will be combined and 
new directories for each time step will be created in the simulation main 
directory: 

>reconstructPar 

Convert the data to ParaView format: 

>foamToVTK 

Note: To do the reconstruction or foamToVTK conversion from a start time until 
an end time the following flags can be used: 

>reconstructPar –time [start time name, e.g. 016]:[end time 

name, e.g. 020] 
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>foamToVTK –time [start time name, e.g. 016]:[end time 

name, e.g. 020] 

Using above commands without entering end time will do the reconstruction or 
conversion from start time to the end of available data:  

>reconstructPar –time [start time name, e.g. 016]: 

>foamToVTK –time [start time name, e.g. 016]: 

For reconstructing or converting only one time step the commands should be 
used without end time and “:”: 

>reconstructPar –time [time name, e.g. 016] 

>foamToVTK –time [time name, e.g. 016]  
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The simulation results are as follows: 

 

 
0 s 

 
0.05 s  

 
0.1 s  

 
0.15 s  

 
0.20 s  

 
0.25 s  

 
0.3 s   

0.4 s  

 
0.5 s  

  

3D depth charge, alpha = 0.5 iso-surfaces, parallel simulation  
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4. Manual method 

4.1. Case set-up and running simulation 

The manual method for decomposition is slightly different from the other three. 
In order to use it: 

After running the blockMesh and setFields utilities, set the decomposeParDict 
file as any other simulation. For decomposition method, choose either simple, 
hierarchical or scotch. Set the number of cores to the same number which is 
going to be used for manual. 

>decomposePar –cellDist 

Once the decomposition is done, check the cellDecomposition file in the 
constant directory. It should have a format similar to: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

1024000 

( 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 ...) 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

Note: If the above output is not displayed, but a stream of NUL characters, your 
text editor is probably printing binary. To fix this, open system/controlDict, and 
change the writeFormat field from binary to asci and rerun the previous 

command. 

The first number n after the header, but before the opening brackets, 1024000 

in this example, refers to the number of points in the mesh. Within the brackets, 
n lines follow. Each line contains one number between 0 and n-1, where n is 

the number of cores to be used for the computation. This number refers to the 
core being used to compute the corresponding cell in the points file in the 
constant directory. For example, if the second line in the points file brackets 
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reads (0.125 0 0) and the second line in the cellDecomposition directoy 

reads 0, this means that the cell (0.125 0 0) will be processed by processor 

0. 

This cellDecomposition file can now be edited. Although this can be done 
manually, it is probably not feasible for any sufficiently large mesh. The process 
must thus be automated by writing a script to populate the cellDecomposition 
file according to the desired processor breakdown. 

When the new file is ready, save it under a different name: 

>cp cellDecomposition manFile 

Now, edit the decomposeParDict file. Select decomposition method manual, 

and for the dataFile field in the manual coeffs range, specify the path to the 

file which contains the manual decomposition. Note that OpenFOAM® searches 
in the constant directory by default, in case relative paths are being used: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

numberOfSubdomains 4; 

 

method         manual; 

 

simpleCoeffs 

{ 

    n               ( 1 4 1 ); 

    delta           0.001; 

} 

 

hierarchicalCoeffs 

{ 

    n               ( 1 4 1 ); 

    delta           0.001; 

    order           xyz; 

} 

 

manualCoeffs 

{ 

    dataFile        "manFile"; 

} 

 

distributed     no; 

 

roots           ( ); 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

Delete the old processor directories, decompose the case with the new 
decomposition settings and run the simulation. 

4.2. Visualizing the processor breakdown 

It may be interesting to visualize how exactly OpenFOAM® breaks down the 
mesh. This can be easily visualized using ParaView. After running the 
simulation, but before running the reconstructPar command, repeat the 
following for each of the processor directories: 

>cd processor<n>  
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where n is the processor number 

>foamToVTK  

convert the individual processor files to VTK, next, open ParaView: 

>paraview & 

For each of the processor directories, perform the following steps: 

- Open the VTK files in the relevant processor directory 

- Double click them to open them and click on “Apply” 

- The part of the mesh decomposed by that core will appear, in grey. 

- Change the color in the drop-down menus in the toolbar. This is to 
ensure that each individual part can be easily seen. 

Once this is done for all processors, the entire mesh will appear. However, the 
processor regions can now easily be seen in a different color. 

In order to save this, there are two options. The first option is to take a 
screenshot: 

File > Save a screenshot 

The second option is to save the settings and modifications as a ParaView state 
file.  

File > Save State 

The current settings and modifications can then be easily recovered by: 

File > Load State 

Saving the state allows changes to be made afterwards. Saving a screenshot 
keeps only a picture, while losing the ability to make changes after exiting 
ParaView. Doing both is recommended. 
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Background 

In this tutorial, we will carry out Residence Time Distribution (RTD) analysis of 
fluid flow through a T-junction pipe.  

1. Residence Time Distribution (RTD) 

Residence Time Distribution (RTD) is a probability distribution function that 
describes the amount of time a fluid element spends in a process unit, such as 
a reactor, column, or pipe. Understanding RTD is crucial for analyzing the 
performance, efficiency, and mixing characteristics of industrial systems. Unlike 
ideal flow assumptions, most real-world fluid flows involve recirculation, 
bypassing, and dispersion, which RTD helps quantify. A few RTD applications: 

• Optimizing reactor design by ensuring effective residence time for 
reactions. 

• Identifying flow inefficiencies such as dead zones and short-circuiting. 

• Enhancing mixing performance in industrial processes. 

• Improving scale-up accuracy for chemical, pharmaceutical, and 
wastewater applications. 

By understanding RTD, engineers can optimize designs, improve product yield, 
and enhance process reliability.  

2. Tracer Analysis 
Tracer analysis is a widely used technique for RTD measurement, where a 
tracer substance (such as dye, salt, or radioactive material) is injected into the 
system, and its concentration at the outlet is monitored over time. This provides 
insight into how fluid elements move through the process unit and allows 
engineers to quantify the RTD function. 

 

Tracer analysis and RTD distribution of an ideal process 

Based on the above diagram, first the tracer is injected into the inlet, and then 
the exit tracer concentration, 𝐶(𝑡), is measured at regular time intervals. This 

allows the exit age distribution, 𝐸(𝑡), to be calculated. 
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𝐸(𝑡) =
𝐶𝑇(𝑡)

∫ 𝐶𝑇(𝑡) 𝑑𝑡
∞

0

=
𝑇𝑟𝑎𝑐𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑐𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 
 

It is clear from the above equation that the fraction of tracer molecules exiting 
the reactor that have spent a time between 𝑡 and 𝑡 + 𝑑𝑡 in the process unit is 
𝐸(𝑡)𝑑𝑡. Since all tracer elements will leave the unit at some point, RTD satisfies 
the following relationship: 

∫ 𝐸(𝑡) 𝑑𝑡 = 1
∞

0

 

Types of Flow Patterns Identified by RTD 

• Ideal Plug Flow: All fluid particles have the same residence time, 
resulting in a sharp, narrow RTD peak. 

• Perfectly Mixed Flow (CSTR - Continuous Stirred Tank Reactor): Fluid 
particles experience a wide range of residence times, leading to a broad 
RTD distribution. 

• Dead Zones and Recirculation: Cause multiple peaks in the RTD curve, 
indicating poor mixing and stagnation. 

• Bypassing Flow: Results in a steep initial RTD rise, meaning some fluid 
exits much earlier than expected. 
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incompressibleFluid & functions – TJunction 

Tutorial outline 

Use the incompressibleFluid and functions to simulate the flow through a 
square cross section T pipe and calculate RTD (Residence Time Distribution) 
for both inlets using a step function injection: 

• Inlet and outlet cross-sections: 1 × 1 m2 

• Gas in the system: air at ambient conditions 

• Operating pressure: 105 Pa 

• Inlet 1: 0.1 m/s 

• Inlet 2: 0.2 m/s 

Objectives 

• Understanding RTD calculation using OpenFOAM® 

• Using multiple solvers for a simulation 

Data processing 

Plot the step response function and the RTD curve.   
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1. Pre-processing 

1.1. Copying tutorial 

Copy the following tutorial to your working directory as a base case: 

$FOAM_TUTORIALS/incompressibleFluid/pitzDaily 

Replace the system directory with the system directory from the following 
tutorial: 

$FOAM_TUTORIALS/incompressibleFluid/pitzDailySteadyExperi

mentalInlet 

Copy the pitzDaily file for the pitzDaily geometry from following directory to your 
system directory: 

$FOAM_TUTORIALS/resources/blockMesh 

1.2. 0 directory 

Update p, U, nut, nuTilda, k and epsilon files with the new boundary conditions 
(in this simulation the following boundaries should be set inlet_one, inlet_two, 
oulet and walls), e.g. for file U: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

dimensions      [0 1 -1 0 0 0 0]; 

 

internalField   uniform (0 0 0); 

 

boundaryField 

{ 

    inlet_one           

    { 

        type            fixedValue; 

        value           uniform (0.1 0 0) 

    } 

    inlet_two           

    { 

        type            fixedValue; 

        value           uniform (-0.2 0 0) 

    } 

    outlet  

    { 

        type            zeroGradient; 

    } 

    walls  

    { 

        type            fixedValue; 

        value           uniform (0 0 0) 

 

    } 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

1.3. constant directory 

Check momentumTransport file for the turbulence model (kEpsilon). 
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

simulationType  RAS 

RAS 

{ 

    model        kEpsilon; 

 

    turbulence      on; 

 

    printCoeffs     on; 

 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

1.4. system directory 

Rename the pitzDaily file to blockMeshDict and edit it to create the geometry. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

convertToMeters 1.0; 

 

vertices         

( 

    (0 4 0) // 0 

    (0 3 0) // 1 

    (3 3 0) // 2 

    (3 0 0) // 3 

    (4 0 0) // 4 

    (4 3 0) // 5 

    (7 3 0) // 6 

    (7 4 0) // 7 

    (4 4 0) // 8 

    (3 4 0) // 9 

    (0 4 1) // 10 

    (0 3 1) // 11 

    (3 3 1) // 12 

    (3 0 1) // 13 

    (4 0 1) // 14 

    (4 3 1) // 15 

    (7 3 1) // 16 

    (7 4 1) // 17 

    (4 4 1) // 18 

    (3 4 1) // 19 

 

); 

blocks           

( 

    hex (0 1 2 9 10 11 12 19) (10 30 10) simpleGrading (1 1 1) 

    hex (9 2 5 8 19 12 15 18) (10 10 10) simpleGrading (1 1 1) 

    hex (8 5 6 7 18 15 16 17) (10 30 10) simpleGrading (1 1 1) 

    hex (2 3 4 5 12 13 14 15) (30 10 10) simpleGrading (1 1 1) 

); 

boundary 

( 

    inlet_one   

    { 

         type patch; 

         faces 

         ( 

            (0 10 11 1) 

         ); 

    } 

    inlet_two   

    { 

         type patch; 

         faces 

         ( 

            (7 6 16 17) 
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         ); 

    } 

    outlet   

    { 

         type patch; 

         faces 

         ( 

            (4 3 13 14) 

         ); 

    } 

    walls   

    { 

         type wall; 

         faces 

         ( 

            (0 1 2 9) 

            (2 5 8 9) 

            (5 6 7 8) 

            (2 3 4 5) 

            (10 19 12 11) 

            (19 18 15 12) 

            (18 17 16 15) 

            (15 14 13 12) 

            (0 9 19 10) 

            (9 8 18 19) 

            (8 7 17 18) 

            (2 1 11 12) 

            (3 2 12 13) 

            (5 4 14 15) 

            (6 5 15 16) 

         ); 

    } 

); 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

2. Running simulation 

>blockMesh 

 

Mesh created using blockMesh 

>foamRun -solver incompressibleFluid 

Wait for simulation to converge. After convergence, check the results to make 
sure about physical convergence of the solution. 

>foamToVTK 
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The simulation results are as follows (results are on the cut plane in the middle): 

 

 

 

Simulation results after convergence (~65 iterations) 

3. RTD calculation 

3.1. Copy tutorial 

Copy following tutorial to your working directory: 

$FOAM_TUTORIALS/incompressibleFluid/pitzDailyScalarTransp

ort 

In the 0 directory, just keep the T file and delete all other files.  

3.2. 0 directory 

Copy and paste the U and p files from the latest time step of the simulation in 
the first part of the tutorial (use the latest time step velocity field from previous 
part of simulation to calculate RTD for this geometry). There is no need to 
modify or change it. The solver will use this field to calculate the scalar 
transportation.  

Update T (T will be used as an inert scalar in this simulation) file boundary 
conditions to match new simulation boundaries, to calculate RTD of the 
inlet_one set the internalField value to 0, T value for inlet_one to 1.0 

and T value for inlet_two to 0.  

3.3. constant directory 

In the momentumTransport file set the simulationType to laminar. 

3.4. system directory 

Copy the blockMeshDict file from the first part of tutorial. 

In the controlDict file change the endTime from 0.2 to 120 (approximately two 

times ideal resistance time) and deltaT from 0.0001 to 0.1 (Courant number 

approximately 0.4). 
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4. Running Simulation  

>blockMesh 

>foamRun -solver functions 

>foamToVTK 

5. Post-processing 

 

Contour plots scalar T at 120 s for inlet 1 

5.1. Calculating RTD 

To calculate RTD the average T value at the outlets should be calculated first. 
The “integrate variables function” of ParaView can be used for this purpose.  

>foamToVTK  

Load the outlet VTK file into paraview using following path: 

File > Open > VTK > outlet > outlet_..vtk > OK > Apply 

Select T from variables menu, and then integrate the variables on the outlet: 

Filters > Data Analysis > Integrate Variables > Apply 

The values given in the opened window are integrated values in this specific 
time step. By changing the time step values for different time steps are 
displayed. As mentioned before, the average value of the property is needed. 
Therefore, these values should be divided by outlet area to get average values 

(1m  1m). 

After finishing the RTD calculations for inlet_one, the same procedure should 

be followed for calculating RTD of inlet_two, except T value for inlet_one 

should be 0 and for inlet_two it should be 1.0.  
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Average value of T on the outlet for two inlets versus time 

The average value of T for each outlet approaches a certain constant value, 
which is the ratio of that scalar mass inlet to the whole mass inlet. For plotting 
data over time “Plot Selection Over Time” option in ParaView can be used, in 
the opened SpreadSheetView window (IntegrateVariables) select the set of 
data which you want to plot over time and then: 

Filters > Data Analysis > Plot Selection Over Time > Apply 

Next, to obtain the RTD plots, export the data to a spreadsheet program (e.g. 
Excel), calculate and plot the gradient of changes in average value of T on the 
outlet from time 0 to 120s for both inlets. 

 

RTD of two inlets 
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Background 

In computational fluid dynamics (CFD) and chemical reaction modeling, two 
commonly used approaches to simulate reactive flows are the Partially Stirred 
Reactor (PaSR) Model and the Eddy Dissipation Concept (EDC) Model. These 
models help in understanding and predicting how chemical reactions occur in 
different flow environments, such as combustion, industrial chemical 
processing, pollutant dispersion, and atmospheric chemistry. 

1. Partially stirred reactor (PaSR) Model 

Partially stirred rector (PaSR) model is used to model thermodynamic and 
chemical reactions numerically, for example, combustion. In the PaSR 
approach, a computational cell is split into two different zones: a reacting zone 
and a non-reacting zone. The reacting zone is modeled as a perfectly stirred 
reactor (PSR), and all reactants are assumed to be perfectly mixed with each 
other.  

For the reactor, we are interested in three concentrations, 1) mean 
concentration of key component in the feed, 𝑐𝑖𝑛; 2) mixture concentration in the 

reacting zone, 𝑐; 3) concentration at the reactor exit𝑐𝑒𝑥𝑖𝑡. 

In the reacting zone, reaction occurs for a duration of 𝜏𝑐, so the concentration 
of mixture changes from 𝑐𝑖𝑛 to 𝑐. In the non-reacting zone, the reacted mixture 
is getting mixed up with the non-reacted mixture for a duration of 𝜏𝑚𝑖𝑥, resulting 

in the final exit concentration, 𝑐𝑒𝑥𝑖𝑡.  

A key parameter to be calculated in this model would be the reaction rate, and 
it is clear that the reaction rate is proportional to the ratio of the chemical 
reaction time to the total conversion time in the reactor (i.e. sum of reacting and 
mixing time), 𝜅𝑘: 

𝜅𝑘 =
𝜏𝑐

𝜏𝑐 + 𝜏𝑚𝑖𝑥

 

2. Eddy dissipation concept (EDC) Model 

The Eddy Dissipation Concept (EDC) model looks at the interaction between 
reaction and turbulence, where the overall reaction rate is controlled by 
turbulent mixing. It is widely used for combustion modeling for a great variety 
of combustion environments with great success.  

It is assumed in the model that most reaction takes place within fine turbulence 
structures, which are modeled as perfectly-mixed reactors. We need to know 
the reaction mass fraction and the mass transfer rate between the fine 
structures and its surrounding fluid. 

The mass fraction occupied by the fine structures, 𝛾∗, is expressed as: 

𝛾∗ = {
𝑢∗

𝑢′
}

2

 

Where 𝑢∗ is the mass average fine structure velocity. The fine structures are in 

regions with nearly constant turbulent kinetic energy given by 𝑢′2. 
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The mass transfer rate between fine structure and surrounding fluid per unit of 
fluid and per unit of time is modeled as: 

�̇� = 2 ⋅
𝑢∗

𝐿∗
⋅ 𝛾∗    

where 𝐿∗ is the characteristic length of the fine structure. 
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multicomponentFluid – reactingElbow 

Tutorial outline 

Use the multicomponentFluid solver; simulate combustion of CH4 and O2 in a 
mixing elbow: 

• Use the two times finer Hex mesh from Example One 

• Domain initially filled with N2 

• velocity-inlet-5: 

- Velocity: 1 m/s 

- Mass fractions: 23 % O2, 77 % N2 

- Temperature: 800 K 

• velocity-inlet-6:  

- Velocity: 3 m/s 

- Mass fractions: 50 % CH4, 50 % N2 

- Temperature: 293 K 

• Operating pressure: 105 Pa 

• Operating temperature: 298 K 

• Isolated walls 

Objectives 

• Understanding multi-species and reaction modeling in OpenFOAM® 

Data processing 

Evaluate your results in ParaView.    
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1. Pre-processing 

1.1. Copying tutorial 

Copy the following tutorial to your working directory: 

$FOAM_TUTORIALS/multicomponentFluid/counterFlowFlame2D 

Copy the GAMBIT® mesh from Tutorial One (two times finer mesh) to the case 
main directory. 

1.2. 0 directory 

Update all the files in 0 directory with new boundary conditions, e.g. U: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

dimensions      [0 1 -1 0 0 0 0]; 

 

internalField   uniform (0 0 0); 

 

boundaryField 

{ 

    wall-4 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

 

    velocity-inlet-5 

    { 

        type            fixedValue; 

        value           uniform (1 0 0); 

    } 

 

    velocity-inlet-6 

    { 

        type            fixedValue; 

        value           uniform (0 3 0); 

    } 

 

    pressure-outlet-7 

    { 

        type            zeroGradient; 

    } 

 

    wall-8 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

 

    frontAndBackPlanes 

    { 

        type            empty; 

    } 

} 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

The reaction taking place in this simulation CH4 combusting with O2 creating 
CO2 and H2O. N2 is the non-reacting species. The boundary conditions and 
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initial value of all species should be defined in the 0 directory. These values are 
mass fractions (between 0 and 1) and dimension less, e.g. CH4: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 0 0 0 0 0 0]; 

 

internalField   uniform 0.0; 

 

boundaryField 

{ 

    wall-4 

    { 

        type            zeroGradient; 

    } 

 

    velocity-inlet-5 

    { 

        type            fixedValue; 

        value           uniform 0; //no CH4 at this inlet 

    } 

 

    velocity-inlet-6 

    { 

        type            fixedValue; 

        value           uniform 0.5; //50% CH4 mass fraction at this inlet 

    } 

 

    pressure-outlet-7 

    { 

        type            zeroGradient; 

    } 

 

    wall-8 

    { 

        type            zeroGradient; 

    } 

 

    frontAndBackPlanes 

    { 

        type            empty; 

    } 

} 

 

// ************************************************************************* // 

Note: If the file for a species does not exist in the 0 directory, the values from 
Ydefault will be used for that species. 

Note: For the pressure-outlet-7 set the species boundary conditions to 

zeroGradient. 

1.3. constant directory 

In the physicalProperties file the physical properties of the species can be set: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

thermoType 

{ 

    type            hePsiThermo; 

    mixture         coefficientWilkeMultiComponentMixture; 

    transport       sutherland; 

    thermo          janaf; 

    energy          sensibleEnthalpy; 

    equationOfState perfectGas; 

    specie          specie; 

} 
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defaultSpecie N2; 

 

#include "thermo.compressibleGas" 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

The mixture type is set to a multi-component mixture for calculating the mixture 
properties and the heat capacities are calculated using “janaf polynomials”.  

N2 is defines as defaultSpecie. In reaction solvers in OpenFOAM® the default 

specie is calculated explicitly using the mass balance equation (to satisfy mass 
conservation): 

𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡 𝑠𝑝𝑒𝑐𝑖𝑒 = 1 − ∑ 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 

Involved species are listed in the thermo.compressibleGas file, which was 
included at the end of physicalProperties file. The species in this simulation are 
O2, H2O, CH4, CO2 and N2. They are defined in the species sub-dictionary: 

species 

( 

    O2 

    H2O 

    CH4 

    CO2 

    N2 

); 

The reactions are addressed in the reactions file: 

reactions 

{ 

    methaneReaction 

    { 

        type     irreversibleArrhenius; 

        reaction "CH4 + 2O2 = CO2 + 2H2O"; 

        A        5.2e16; 

        beta     0; 

        Ta       14906; 

    } 

} 

in the reactions sub-dictionary. The reaction of methane combustion is 

defined and it is of type irreversible Arrhenius reaction, 

irreversibleArrhenius.  

In the Tutorial Two it was explained that the coefficients for calculating gas 
mixture properties are defined in the mixture sub-dictionary because it was a 

homogeneous mixture. However, in this example the mixture is not 
homogenous so coefficients for calculating properties of each species are 
needed separately to calculate mixture properties based on each cell 
composition. The coefficients of each species are defined in the 
thermo.compressibleGas file from the constant directory. For example, the O2 

coefficients for each model are shown below: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

O2 

{ 

    specie 

    { 

        molWeight       31.9988; 
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    } 

    thermodynamics 

    { 

        Tlow            200; 

        Thigh           5000; 

        Tcommon         1000; 

        highCpCoeffs    ( 3.69758 0.00061352 -1.25884e-07 1.77528e-11 -                   

                          1.13644e-15 -1233.93 3.18917 ); 

        lowCpCoeffs     ( 3.21294 0.00112749 -5.75615e-07 1.31388e-09 – 

                          8.76855e-13 -1005.25 6.03474 ); 

    } 

    transport 

    { 

        As              1.753e-06; 

        Ts              139; 

    } 

} 

… 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

In the thermodynamics sub-dictionary, the janaf polynomial model coefficients 

for calculating the heat capacity can be found and in transport the sutherland 

model coefficients for viscosity are stored. 

1.4. system directory 

By setting the adjustTimeStep to yes in the controlDict, the solver 

automatically ignores deltaT, and calculates the deltaT based on the 

maximum Courant number maxCo defined for it. Change the endTime to 120 

(approximately one time the volumetric residence time based on velocity-inlet-
5) and writeInterval to 10, to write every 10 s to case directory. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

application     foamRun; 

 

solver         multicomponentFluid 

 

startFrom       startTime; 

 

startTime       0; 

 

stopAt          endTime; 

 

endTime         120; 

 

deltaT          1e-6; 

 

writeControl    adjustableRunTime; 

 

writeInterval   10; 

 

purgeWrite      0; 

 

writeFormat     ascii; 

 

writePrecision  6; 

 

writeCompression off; 

 

timeFormat      general; 

 

timePrecision   6; 
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runTimeModifiable true; 

 

adjustTimeStep  yes; 

 

maxCo           0.4; 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

2. Running simulation 

>fluentMeshToFoam fineHex.msh  

After converting the mesh, check the boundary file in the constant/polyMesh 
directory and change the type and inGroups of boundary 

frontAndBackPlanes from wall to empty (it is a 2D simulation). 

>foamRun -solver multicomponentFluid 

>foamToVTK 

3. Post-processing 

The simulation results at 120 s are as follows: 
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Simulation results after 120 s 
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Background 

In this tutorial, we will familiarize ourselves with the snappyHexMesh tool in 
OpenFOAM®. This utility generates 3D meshes containing hexahedra and split-
hexahedra. We will also introduce different types of meshes with complex 
geometries and compare the snappyHexMesh tool with other mesh generation 
tools.  

1. Meshes with complex geometries 

So far we have only worked with meshes in Cartesian co-ordinates, however, 
many engineering problems involve complex geometries that do not fit exactly 
in Cartesian co-ordinates. In such cases, it would be much more advantageous 
to work with grids that can handle curvature and geometric complexity more 
naturally. 

CFD methods for complex geometries are classified into two groups: 

1. structured curvilinear grid arrangements  

2. unstructured grid arrangements 

In a structured grid arrangements: 

• Cells center points are placed at the intersections of co-ordinates lines  

• Cells have a fixed number of neighboring cells  

• Cells center points can be mapped into a matrix based on their location 
in the grid  

• Structure and position in the matrix is given by indices (I, J in two 
dimensions and I, J, K in three dimensions)  

For the most complex geometries it may be necessary to sub-divide the flow 
domain into several different blocks, where each mesh cell is a block, this is 
known as block-structured grids. The next level of complexity is the 
unstructured grids. It gives unlimited geometric flexibility, here the limitations 
of structured grids do not apply – but at the cost of higher programming and 
computational efforts. Unstructured grids also allow the most efficient use of 
computing resources for complex flows, so this technique is now widely used 
in industrial CFD. 

2. Mesh generation tools 

There are a number of advanced meshing tools available, both commercial and 
free source. The major mesh generators are ANSYS GAMBIT®, ICEM, Salome, 
snappyHexMesh and cfMesh. Here we will learn about GAMBIT®, 
snappyHexMesh and cfMesh tools in detail. 

2.1. GAMBIT® 

GAMBIT® is a 3D unstructured tool, to specify the meshing scheme in it, two 
parameters must be specified: 
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• Elements 

• Type 

The Elements parameter defines the shape(s) of the elements that are used to 
mesh the object. The Type parameter defines the pattern of mesh elements on 
the object. It has a single graphical user interface which brings geometry 
creation and meshing together in one environment.  

2.2. snappyHexMesh 

In contrast to GAMBIT®, which incorporates both mesh generation and 
refinement, the snappyHexMesh tool built within OpenFOAM® requires an 
existing geometry base mesh to work with. The base mesh usually comes from 
the blockMesh tool. This utility has the following key features: 

• allow parallel execution to speed up the process 

• supports geometry data from STL/OBJ files 

• addition of internal and wall layers 

• zonal meshing  

The key steps involved when running snappyHexMesh are: 

• Castellation: The cells which are beyond a region set by a predefined 
point are deleted 

• Snapping: Reconstructs the cells to move the edges from inside the 
region to the required boundary 

• Layering: Creates additional layers in the boundary region. 

The advantages of snappyHexMesh over the other mesh generation tools are 
as follows: 

• No commercial software package is ultimately necessary. For the 
meshing, the OpenFOAM® environment is sufficient and no further 
software is necessary. 

• The geometry can be created with any CAD program like CATIA®, 
FreeCAD, etc. As the geometry is to be only surface data, the files need 
to be in .stl, .nas or .obj. format. 

• The meshing process can be run in parallel mode. If high computational 
capabilities are available, high quality meshes can be generated in little 
time. 

2.3. cfMesh 

cfMesh is an open-source library for mesh generation implemented within the 
OpenFOAM® framework (like snappyHexMesh). Currently cfMesh is capable of 
producing mesh of Cartesian type in both 2D and 3D, tetrahedral and 
polyhedral types.  
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The fundamental work-flow of the tool starts from a mesh template, then 
followed by a mesh modifier. The modifier allows for efficient parallelization 
using shared memory parallelization (SMP) and distributed memory 
parallelization using MPI. 
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snappyHexMesh – flange 

Tutorial outline 

The procedure described in this tutorial is structured in the following order: 

• Creation of the geometry data 

• Meshing a geometry with one single region 

• Run an OpenFOAM® simulation with the generated mesh using 
functions solver 

Objectives 

• The aim of the tutorial is to introduce single region meshing with the 
meshing tool snappyHexMesh 

• Understanding the advantages of snappyHexMesh 

• Understanding the three basic steps of snappyHexMesh 

Data processing 

Import your simulation to ParaView and analyze the heat distribution in the 
flange.   
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1. Pre-processing 

1.1. Copying tutorial 

Copy the following tutorial to your working directory. 

$FOAM_TUTORIALS/mesh/snappyHexMesh/flange 

Normally the .stl files are created using CAD software, such as CATIA® and 
freeCAD. stl files contain information about the solid geometry. However, in this 
tutorial the stl files are available to be copied from the OpenFOAM® tutorials 
folder. To do this, copy the stl files from the below location to the 
constant/geometry of your running case directory.  

$FOAM_TUTORIALS/resources/geometry/flange.stl.gz  

1.2. constant directory 

The geometry folder in the constant directory contains the geometry files to be 
meshed (stl, nas, obj). The files names is to be used as a reference in later 
stages. 

Note: The stl file should be in ascii format. All the stl files (different boundaries 
stl files) should form a closed geometry together otherwise it is not possible to 
differentiate between inside and outside of the geometry in the meshing 
process. 

1.3. system directory 

For creating a mesh using snappyHexMesh, the following files should be 
present in system directory: 

- blockMeshDict: For meshing using snappyHexMesh a background 
mesh is needed, which should surround the geometry surface (e.g. stl 
file) file. The background mesh will be refined based on the settings in 
the snappyHexMeshDict and the extra parts will be removed. Usually, 
the background mesh is created using blockMesh. Here we define a 
base mesh. 

Note: To ensure that the sharp edges are refined properly, it is very important 
to create perfect cube cells in the background mesh using blockMesh utility. 

- decomposeParDict: The meshing using snappyHexMesh can be also 
performed in parallel mode, in this case the parameters for distributed 
processors are set in this file. 

- meshQualityDict: Parameters to be checked for mesh quality and their 
values are defined in this file (the default values are usually good). 

- surfaceFeatureExtractDict: Using surfaceFeatures utility prior to 
meshing with snappyHexMesh helps to extract the sharp edges and 
have a better mesh with snappyHexMesh on these edges. All edges are 
marked, whose adjacent surfaces normal are at an angle less than the 
angle specified in includedAngle in the surfaceFeaturesDict. The 
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extracted edges are written to “*.extendedFeatureEdgeMesh” files in 
constant/extendedFeatureEdgeMesh folder to be treated later in the 
meshing process. 

   //  * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * // 

Surfaces (“flange.stl”); 

 

includedAngle    150; 

   //  * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * // 

- snappyHexMeshDict: This file includes the settings for running the 
snappyHexMesh. As mentioned in the Background section meshing 
using this tool has three steps: 

1) Castellating 

2) Snapping 

3) Layering 

In the first section of this file, castellatedMesh, snap, addLayers can be set 

to true or false depending on the stages required. In the following setting, 
castellating and snapping are active and adding layers is deactivated (to 
activate it, set the flag to true). 

   //  * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * // 

           castellatedMesh           true; 

           snap                      true; 

           addLayers           false; 

   //  * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * // 

The Geometry sub-dictionary lists all surfaces used by snappyHexMeshDict, 

and assign them a name to be used as a reference. 

It is also possible to specify regions in the domain that we want to treat them 
specially later, e.g. in this case we try to define a spherical region to refine it. 
The refined region is given an arbitrary name; in this case, it is refineHole, 

which is a sphere with its center and radius defined.  

//  * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

geometry 

{ 

    flange 

    { 

        type triSurfaceMesh; 

        file “flange.stl”; 

    } 

    refineHole 

{ 

    type searchableSphere; 

    centre (0 0 -0.012); 

    radius 0.003; 

    } 

}; 

   //  * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * // 

 

1.3.1. CASTELLATING 
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In the castellating step based on the settings in the snappyHexMeshDict file, 
the created background mesh (in this case using blockMesh) cells are cut into 
sub-cells and the unneeded part of the mesh will be deleted (based on the 
internal point defined by user). The background mesh is known as mesh “level 
0”, by setting the “level” to 1 the background mesh at the position of features or 
defined refinements will be cut into half in each direction (creating 8 sub-cells 
for a 3D mesh). Therefor by each level of refinement number of cells increases 
by factor 8! 

 

Refinement level 0, level 1, level 2, level 3 

The castellatedMeshControls sub-dictionary is used for user-defined mesh 

refinement in the castellating step. 

features allows refinement of the “*.extendedFeatureEdgeMesh” edges to a 

certain level.  

refinementSurfaces are for surface-based refinement. Every surface is 

specified with two levels. The first level is the minimum level and the second 
level is the maximum level of refinement. If the type of the surface is also 
defined (e.g. patch or wall) the surface will be marked as a boundary with the 
assigned name and type. 

resolveFeatureAngle is an important setting. Edges, whose adjacent 

surfaces normal are at an angle higher than the value set, are resolved. The 
lower the value, the better the resolution at sharp edges. 

refinementRegions: Volume based refinement of the regions defined in the 

geometry section. In this tutorial the refinementHole region will be refined. In 

the levels the first number (1E15) is the maximum number of the cells which can 
be reached after refinement in this region and second number (3) is the level of 
refinement  

locationInMesh: Important coordinate for single region cases, to define which 

part of the mesh should be kept, inside or outside the geometry. 

   //  * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * // 

castellatedMeshControls 

{ 

    maxLocalCells 100000; 

    maxGlobalCells 2000000; 

    minRefinementCells 0; 

    nCellsBetweenLevels 1; 

 
    features 

    ( 

        { 

            file "flange.extendedFeatureEdgeMesh"; 

            level 0; 

        } 
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    ); 

 
    refinementSurfaces 

    { 

        flange 

        { 

    level (2 2); 

        } 

    } 

 
    resolveFeatureAngle 30; 

 
    refinementRegions 

    { 

       refineHole 

       { 

          mode inside; 

          levels ((1E15 3)); 

       } 

       locationInMesh (-9.23149e-05 -0.0025 -0.0025); 

       allowFreeStandingZoneFaces true; 

    } 

   //  * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * // 

Note: The locationInMesh point should never be on a face of the mesh, even 

after refinement. It should always be inside a cell or the meshing will fail! 

In the castellated step, the background mesh will be refined based on the 
defined refinement levels at features, surfaces or regions and the unneeded 
part of the mesh will be removed. 

1.3.2. SNAPPING 

Important parameters are number of mesh displacement iterations, 
nSolveIter and the number of feature edge snapping iterations, 

nFeatureSnapIter. The default values are fine for most of applications. 

//  * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

snapControls 

{ 

    nSmoothPatch 3; 

    tolerance 1.0; 

    nSolveIter 300; 

    nRelaxIter 5; 

        nFeatureSnapIter 10; 

        implicitFeatureSnap false; 

        explicitFeatureSnap true; 

        multiRegionFeatureSnap true; 

} 

//  * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

1.3.3. LAYERING 

The label for the layering is equal to the labeling of the Boundary surface in the 
boundary file in the constant/polyMesh folder. 

- nSurfaceLayers defines the number of surface layers 

- expansionRatio defines the expansion ratio of the surface layers 

- finalLayerThickness and minThickness define the min and the final 

thickness of the surface layers 
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- nLayerIter: if not snapped smoothly enough, the max number of layer 

addition iteration can be increased. 

   //  * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * // 

addLayersControls 

{ 

    relativeSizes true; 

    layers 

    { 

        “flange_.*” 

        { 

            nSurfaceLayers  3; 

        } 

    } 

expansionRatio 1.005; 

 

    finalLayerThickness 0.3; 

    minThickness 0.25; 

    nGrow 0; 

    featureAngle 30; 

    nRelaxIter 5; 

    nSmoothSurfaceNormals 1; 

    nSmoothNormals 3; 

    nSmoothThickness 10; 

    maxFaceThicknessRatio 0.5; 

    maxThicknessToMedialRatio 0.3; 

    minMedianAxisAngle 90; 

    nBufferCellsNoExtrude 0; 

nLayerIter 50; 

nRelaxedIter 20; 

} 

meshQualityControls 

{ 

    #include "meshQualityDict" 

relaxed 

{ 

    maxNonOrtho 75; 

} 

 

nSmoothScale 4; 

    errorReduction 0.75; 

} 

writeFlags 

( 

    scalarLevels 

    layerSets 

    layerFields 

); 

mergeTolerance 1e-6; 

   //  * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * // 

Note: Only the relevant changes, which were used in the sample flange case, 
are commented in the snappyHexMeshDict. 

2. Running snappyHexMesh 

The background mesh is created with the following command: 

>blockMesh 

According to the settings in the blockMeshDict, the mesh was created with 20 
cells in x direction, 16 cells in y direction and with 12 cells in z direction.  
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Block mesh for flange 

>surfaceFeatures 

The command to mesh the flange geometry on one processor is 

>snappyHexMesh 

Note: The meshing process with snappyHexMesh can also be run in parallel. 
To run the command on several processors, refer to Tutorial Eight for more 
information. 

The command snappyHexMesh creates a folder with the mesh files for each 

mesh step. If, for example, in the snappyHexMeshDict, only castellatedMesh 
is set to true and snap and addLayers are set to false, only one folder is created. 
If also snap is set to true, 2 folders are created and if also addLayers is set to 
true, 3 folders with 3 polyMesh folders are created. The folders are created 
based on the deltaT settings in the controlDict File (in this case it is 1, therefore 

folders are 1, 2 and 3). 

 

Folders structure after running snappyHexMesh 



 

 

OpenFOAM® Basic Training 

Tutorial Twelve 

 

In order to avoid the creation of these folders and only keep the final mesh (to 
be written directly in the constant folder), the following command can be used 
to overwrite the previous meshing steps. In this case, only one polyMesh folder 
exits in the /constant directory. 

 

Folders structure after using -overwrite flag 

>snappyHexMesh –overwrite 

However, sometimes it is useful to run snappyHexMesh without the overwrite 
option, as it allows the user to make changes to a specific time step without 
having to run all the other steps again, thus reducing computational time.  

3. Examining the meshes 

To examine, what each of the steps in the snappyHexMeshDict really does, we 
need to turn off the overwrite feature in snappyHexMesh command and 
generate VTK files to be opened in ParaView.  

>foamToVTK 

Simply change the time in Paraview to see the effect of snappyHexMesh steps 
on the mesh, i.e. time 1 corresponds to the mesh after castellating step, time 2 
for the mesh after snapping step, time 3 for the mesh after the layering step.  

 

Flange mesh for step castellating with surface refinement level 2 
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Flange mesh for step castellating with surface refinement level 3 

 

Flange mesh for step snap with surface refinement level 3 

 

Flange mesh for step addlayers with surface refinement level 3 

The slice views taken with ParaView from the center of the flange. The slices 
are depicted by the red plain in the following figure: 
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Flange with sectional plain 

You can review the mesh quality with the tool checkMesh. 

>checkMesh 

4. Running simulation  

4.1. Copy tutorial 

Now with the new mesh ready, let’s run some simulation on it! Here functions 
solver is chosen for the simulation. To set up the case, copy the following 
tutorial file into your working directory: 

$FOAM_TUTORIALS/incompressibleFluid/pitzDailyScalarTransp

ort 

The flange mesh files need to be transferred to the running case directory. To 
achieve this, copy the polyMesh folder from the latest time step file of the flange 
folder into the constant directory of the pitzDaily folder. If the overwrite function 
is activated when running snappyHexMesh, copy the polyMesh folder from 
constant directory of the flange folder. 

4.2. Case set-up 

The following changes need to be made to set up the case: 

In the 0 directory: 

Remove all the files, except p, T and U. Update the T file, so that the flange has 
an initial temperature of 293K but is heated up from the inlet at 350K 

dimensions      [0 0 0 1 0 0 0]; 

 

internalField   uniform 293; 

 

boundaryField 

{ 

   flange_patch1 



 

 

OpenFOAM® Basic Training 

Tutorial Twelve 

 

    { 

        type            fixedValue; 

        value           uniform 350; 

    } 

    flange_patch2 

    { 

        type            fixedValue; 

        value           uniform 293; 

    } 

    flange_patch3 

    { 

        type            fixedValue; 

        value           uniform 293; 

    } 

    flange_patch4 

    { 

        type            fixedValue; 

        value           uniform 350; 

    } 

} 

 

Update the U and p files so that the velocity in the entire flange domain and at 
the boundaries is zero. 

Note: to set the initial fields to zero, remove the nonuniform filed and it values 
and replace it with uniform field value, e.g. uniform (0 0 0 ). 

In the constant directory 

In the momentumTransport file, set the simulationType to laminar. 

In the system directory 

Update the controlDict file in the system directory by changing the endTime to 

0.0005, deltaT to 0.000001 and writeInterval to 100. 

4.3. Running solver 

Run the solver with the command 

>foamRun -solver functions 

4.4. Results 

Convert the results to VTK files with 

>foamToVTK 
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Heating of the flange from 0.01 to 0.05s 
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Background 

Multi-region modeling is a computational approach used in CFD simulations 
where the entire computational domain is divided into distinct regions, each 
representing a specific phase or material. This method is particularly useful for 
simulating conjugate heat transfer (CHT), fluid-structure interactions, and 
multiphase flow scenarios. 

The key advantage of multi-region modeling is that it allows for separate 
governing transport equations to be solved for each region, ensuring accurate 
representation of different physical properties, material behaviors, and 
interactions at the interfaces. 

Multi-region modeling is essential in cases where: 

• Different materials with varying thermal properties exist (e.g., heat 
exchangers, cooling of electronic components, and thermal insulation 
studies). 

• Conjugate heat transfer (CHT) needs to be modeled, where heat 
conduction through solids and convection in fluids occur simultaneously. 

• Interfaces between different phases or substances are present (e.g., 
solid-liquid). 

• Fluid-structure interaction (FSI) must be considered in simulations, 
where structural deformation affects the surrounding fluid flow. 

• Energy transfer in coupled systems requires resolving different 
governing equations in separate domains. 

Approaches to Multi-Region Modeling 

Historically, two primary approaches have been used to solve multi-region 
problems: 

1. Monolithic Approach 

A single coupled matrix equation system is used to solve all regions 
simultaneously. Requires a strong coupling of governing equations across 
different regions and ensures better numerical stability but is computationally 
expensive. Typically used in high-accuracy simulations such as finite element-
based methods. 

2. Partitioned Approach (Used in OpenFOAM®) 

Each region is treated as an independent subdomain, with separate governing 
equations solved for each. Interface conditions between regions are explicitly 
enforced via boundary conditions and it is computationally more efficient than 
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the monolithic approach. It is used in scenarios where different physics must 
be solved separately but interact at interfaces. 

Steps for Multi-Region Modeling in OpenFOAM® 

Step 1: Define the Computational Domain & Mesh Regions 

The entire simulation domain is divided into multiple regions, typically a 
combination of fluid and solid domains. Each region is assigned specific 
material properties, such as: density, viscosity, thermal conductivity and 
specific heat capacity for fluids and thermal conductivity, heat capacity, and 
density for solids. The mesh is generated separately for each region using tools 
like blockMesh, snappyHexMesh, or external meshing software. 

Step 2: Assign Field Variables for Each Region 

Each region requires separate field definitions, such as temperature (T), 
velocity (U), and pressure (p). Thermophysical properties for each region are 
defined using thermophysicalModels and initial conditions for each region must 
be assigned in the 0 directory. 

Step 3: Solve Transport Equations in Each Region 

The governing equations for mass, momentum, and energy are solved for each 
individual region. For fluid regions, Navier-Stokes, continuity and energy 
equations equations are solved while in the solid region’s equations such as 
Fourier heat conduction equation for temperature distribution are normally 
considred. Time-stepping is based on the smallest time-step for all the regions 
and numerical schemes are managed separately for each region. 

Step 4: Multi-Regional Coupling at Interfaces 

The interaction between different regions is enforced at interfaces by specifying 
boundary conditions. The interface conditions can be temperature continuity 
(matching temperature at the interface) and heat flux continuity (ensuring 
conservation of energy transfer). 

Step 5: Iterative Solution for Fully Coupled Results 

The solver iterates between individual region solutions until convergence is 
achieved. Adjustments to time-stepping, solver settings, and relaxation factors 
may be needed for numerical stability. 
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snappyHexMesh - snappyMultiRegionHeater 

Tutorial outline 

Try to create a multi-region geometry and mesh and run a conjugate heat 
transfer case using it. 

Objectives 

• Understanding multi region meshing with the meshing tool 
snappyHexMesh 

Data processing 

Import your simulation to ParaView. Analyze the flow field through the flange 
and the heat distribution in the flange.   
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1. Pre-processing 

1.1. Copying tutorial 

Download the following tutorial to your working directory: 

https://github.com/OpenFOAM/OpenFOAM-

5.x/tree/master/tutorials/heatTransfer/chtMultiRegionFoam/snappyMultiRegionHeater 

Either by creating the folders and then downloading the files and place them in 
relevant folders or using following webpage:  

https://download-directory.github.io/ 

Rename the constant/triSurface directory to constant/geometry directory. In the 
system directory, change the name of surfaceFeatureExtractDict to 
surfaceFeaturesDict. 

1.2. 0 directory 

Unlike the single region simulations in the 0 directory an individual folder per 
region exist which stores the files including initial and boundary conditions for 
that region (the folders can be created manually or will be generated 
automatically after creating and splitting the mesh). Also in the 0 directory some 
files exists which are just dummy files that will not be used in the simulations. 
The initial and boundary conditions for each region are changed and updated 
using the changeDictionary utility, which will be explained later.  

1.3. constant directory 

Also in the constant directory exist a folder per region; in this case, the domain 
is split into the following regions: bottom air, heater, left solid, right solid and top 
air. Within the designated folder, there are relevant dictionaries that describe 
the physical properties, turbulence or radiation behavior of each region, e.g. 
radiationProperties, momentumTransport and physicalProperties. The 
following changes should be applied (these changes are required, since the 
original tutorial belongs to OpenFOAM 5): 

• In the bottomAir rename thermoPhysicalProperties file to 
physicalProperties 

• In the bottomAir rename turbulenceProperties file to 
momentumTransport 

• Copy the physicalProperties, momentumTransport and g file from 
bottomAir to topAir folder 

• Update the thermoPhysicalProperties file in the constant/heater folder 
as following 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

thermoType 

{ 

    type            heSolidThermo; 

    mixture         pureMixture; 

https://github.com/OpenFOAM/OpenFOAM-5.x/tree/master/tutorials/heatTransfer/chtMultiRegionFoam/snappyMultiRegionHeater
https://github.com/OpenFOAM/OpenFOAM-5.x/tree/master/tutorials/heatTransfer/chtMultiRegionFoam/snappyMultiRegionHeater
https://download-directory.github.io/


 

 

OpenFOAM® Basic Training 

Tutorial Thirteen 

 

    transport       constIsoSolid; 

    thermo          eConst; 

    equationOfState rhoConst; 

    specie          specie; 

    energy          sensibleInternalEnergy; 

} 

 

mixture 

{ 

    specie 

    { 

        molWeight   12; 

    } 

 

    transport 

    { 

        kappa   80; 

    } 

 

    thermodynamics 

    { 

        Hf      0; 

        Cv      450; 

    } 

 

    equationOfState 

    { 

        rho     8000; 

    } 

} 

 

// ************************************************************************* // 

 

• Copy the thermoPhysicalProperties file from constant/heater folder to 
constant/leftSolid and constant/rightSolid and replace the old files 

The polyMesh directory in the constant folder (after the mesh is created) 
includes the original mesh while the polyMesh directories in each region folder 
(after the mesh is splitted) include the split mesh for that region with the new 
boundaries between regions. 

Unlike polyMesh directories there exist just one geometry folder which stores 
all the stl files for mesh creation using snappyHexMesh. 

In the regionProperties file, the physical phase of each region is specified. As 
you can see, bottom and top air regions are fluid, whereas heater, left and right 
solid are in solid phase.  

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

regions 

( 

        fluid                  (bottomAir   topAir) 

        solid                  (heater   leftSolid   rightSolid) 

); 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

1.4. system directory 

Like constant directory also in system directory, a folder per region can be found 
and all the settings for that region are stored in the corresponding folder, e.g. 
fvSolution, fvSchemes and decomposeParDict. The fvSchemes file in the 
system directory is a dummy file while the fvSolution includes the number of 
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outer correctors setting for PIMPLE algorithm. There is also just one controlDict 
file and it is in main system folder.  

Note: For running the simulations in parallel, the decomposeParDict files for all 
the regions should have the same settings as the main one in the system 
directory. This is not valid for parallel meshing using snappyHexMesh while it 
just uses the decomposeParDict file in the main system directory. 

Update the surfaceFeaturesDict file as following: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

surfaces ("bottomAir.stl" "heater.stl" "leftSolid.stl" "rightSolid.stl" 

"topAir.stl"); 

includedAngle   150; 

writeFeatureEdgeMesh    yes; 

 

// ************************************************************************* // 

Change the meshQualityDict as following: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

// Include defaults parameters from master dictionary 

#includeEtc "caseDicts/mesh/generation/meshQualityDict" 

 

// ************************************************************************* // 

The files needed for creating a multi-region mesh are the same as the mesh for 
single-region, except for slight differences in snappyHexMeshDict file:  

locationInMesh: In a multi-region mesh this point is not used but it should be 

defined just as a place holder. 

refinementSurfaces: Different regions are defined here. E.g. for the region 

BottomAir all the faces and cells inside the bottomAir.stl (each region stl should 
be a closed volume) file are marked with bottomAir flag (in faceZone and 

cellZone). 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * *// 

castellatedMeshControls 

{ 

    maxLocalCells 100000; 

    maxGlobalCells 2000000; 

    minRefinementCells 10; 

    nCellsBetweenLevels 2; 

     

    features 

    ( 

        { 

            file "bottomAir.eMesh"; 

            level 1; 

        } 

… 

        { 

            file "topAir.eMesh"; 

            level 1; 

        } 

    ); 

     

    refinementSurfaces 

    { 

        bottomAir 

        { 

            level (1 1); 

            faceZone bottomAir; 
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            cellZone bottomAir; 

            cellZoneInside inside; 

        } 

… 

       rightSolid 

        { 

            level (1 1); 

            faceZone rightSolid; 

            cellZone rightSolid; 

            cellZoneInside inside; 

        } 

    } 

 

    resolveFeatureAngle 30; 

   

    refinementRegions 

    { 

    } 

    locationInMesh (0.01 0.01 0.01); 

    allowFreeStandingZoneFaces false; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * *// 

After creation of the mesh and splitting to different regions, the initial and 
boundary conditions for each region can be manually set in the relevant region 
folders in 0 directory. This process can be also automated using the 
changeDictionary utility. The dictionary file for this utility for each region is in the 
relevant region folder in the system directory: changeDictionaryDict.  

See below the changeDictionaryDict file for the heater region.  In the boundary 

sub-dictionary type of boundaries for minY, MinZ and maxZ are set to patch. 

Then for T the internal field will be overwritten with uniform 300. In the next 

step all the boundaries in the T file for heater region will be set to zeroGradient 

(“.*” means all the boundaries with any name) and after that the bounadries 

with the name “heater_to_.*” will be changed to 

turbulentTemperatureCoupledBaffleMixed and minY will be changed to 

fixedValue. 

  // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * *// 

boundary 

{ 

minY     

{ 

     type             patch; 

} 

minZ 

{ 

     type             patch; 

} 

maxZ 

{ 

     type             patch; 

} 

} 

 

T 

{ 

internalField         uniform 300; 

 

boundaryField 

{ 

    “.*” 

    { 
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       type               zeroGradient; 

       value              uniform 300; 

 } 

“heater_to_.*” 

{ 

   type               compressible::turbulentTemperatureCoupledBaffleMixed; 

   Tnbr               T; 

   knappaMethod       solidThermo; 

   value              uniform 300; 

} 

minY 

{ 

   type               fixedValue; 

   value              uniform 500; 

} 

} 

    } 

   // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * *// 

In the meshQualityDict file, change the following line: 

#includeEtc “caseDicts/meshQualityDict” 

to 

#includeEtc “caseDicts/mesh/generation/meshQualityDict.cfg” 

Note: Add the missing “;” to the fvSolution files for bottomAir and topAir regions: 

“(rho|rhoFinal)” 

{ 

    solver          PCG; 

    preconditioner  DIC; 

    tolerance       1e-7; 

    relTol          0; 

} 

Update the laplacianSchemes in the the system/heater/fvSchemes file as 
following: 

laplacianSchemes 

{ 

    default             Gauss linear corrected; 

    laplacian(alpha,h)  Gauss linear corrected; 

} 

 

In the system/heater/fvSolution change the h, $h and hFinal to e, $e and eFinal. 

Copy and replace the fvScheme and fvSolution files from system/leftSolid and 
system/rightSolid with the ones from system/heater 

Copy fvSchemes and fvSolution from bottomAir to topAir (replace the files)  

2. Mesh creation and running simulation 

The background mesh is created with blockMesh. 

>blockMesh 

Equal to the single region case, the command surfaceFeatures creates the 

eMesh files from the stl files with the geometry data. Also the folder 
extendedFeatureEdgeMesh is created in the constant directory. The creation 
of eMesh files with the command surfaceFeatures is not obligatory. This step 

is only necessary, if certain edges need to be refined. 
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>surfaceFeatures 

For performing the meshing in parallel, the geometry needs to be decomposed 
prior to running snappyHexMesh. Depending on the number of subdomains, 
defined in the decomposeParDict, the processor folders are created 
accordingly. 

>decomposePar 

Note: It is recommended, not to use the scotch method to decompose the 
region. Rather, the hierarchical or the simple method should be used. In case 
of scotch method, errors can occur while executing snappyHexMesh or while 
reconstructing the mesh. 

In order to prevent the creation of the folders 1, 2 (castellation and snapping 
features are turned on while layering is turned off) and only keep the final time 
step folder with the final mesh, the command -overwrite can be added after 
snappyHexMesh. In this case, only one folder, 0, is created with the files 
pointLevel and cellLevel. The mesh data in this case is located in 
constant/polyMesh. 

>mpirun -np 4 snappyHexMesh -parallel -overwrite 

Note: If castellatedMesh and snap are set on true in the snappyHexMeshDict, 
only the snapped mesh is stored, whereas the intermediate step 
castellatedMesh is overwritten. If castellatedMesh, snap and addLayers are set 
on true in the snappyHexMeshDict, only the layered mesh is stored and the 
previous intermediate steps castellatedMesh and snap are overwritten. 

In this case, only the steps castellatedMesh and snap are set to true, as these 
steps are applied to the whole mesh. The following command reconstructs the 
final mesh: 

>reconstructPar –constant 

After this step, all the regions are meshed but the meshes are connected and 
needs to be split. In the meshing step each region cells are marked with a flag 
and this flag will be used in the next step to split the mesh. Mesh regions can 
be split using the following command which split the mesh based on the flagged 
cellZones and overwrite the old meshes in the polyMesh directories in the 
region folders (if any exist): 

>splitMeshRegions -cellZones -overwrite 

With the mesh ready, the next step is to apply appropriate field values to each 
region, according to the changeDictionaryDict. This command needs to be 
repeated for each region, with the name of the region specified after the prefix 
‘–region’. 

>changeDictionary –region heater 

>changeDictionary –region topAir 
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>changeDictionary –region bottomAir 

>changeDictionary –region rightSolid 

>changeDictionary –region leftSolid 

Before running the simulations, the solver for each region needs to be defined, 
in the controlDict file add the following lines: 

regionSolvers 

{ 

      bottomAir   fluid; 

      topAir      fluid; 

      heater      solid; 

      leftSolid   solid; 

      rightSolid  solid; 

} 

and also remove the rho files from 0/topAir and 0/bottomAir folders, now it is 
ready to be run. 

>foamMultiRun 

Note: foamMultiRun can also be run on several processors. 

3. Post-processing 

The results need to be converted to VTK files for each region with flag -region. 

>foamToVTK –region heater 

>foamToVTK –region topAir 

 

Temperature profile of heater region at time 15s and 75s 
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Temperature profile of entire mesh at time 15s and 75s 
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Background 

1. Importance of Sampling in CFD Simulations 

In computational fluid dynamics, it is crucial to analyze simulation results 
effectively to ensure accurate predictions and correct numerical behavior. 
Sampling provides: 

• Enhanced Debugging: Identifying issues such as unexpected flow 
behaviors, numerical instability, or divergence at an early stage. 

• Real-time Monitoring: Observing the evolution of flow variables without 
waiting for the simulation to finish. 

• Efficient Data Management: Extracting only necessary data instead of 
storing large amounts of full-domain output, thereby reducing storage 
requirements. 

• Post-processing Flexibility: Enabling in-depth analysis and visualization 
of selected flow regions using external tools such as ParaView . 

2. Sampling in OpenFOAM® 

This tutorial serves as a introduction to the sampling utility available in 
OpenFOAM®. The sampling utility is a powerful feature that allows users to 
extract data from specific surfaces or points within a simulation domain. This 
extracted data can then be analyzed to understand the behavior of the 
simulated flow, validate numerical results, or visualize specific regions of 
interest. 

Sampling in OpenFOAM® can be performed in two primary ways: 

• Post-processing sampling – Data is extracted after the simulation has 
completed. 

• In-situ sampling – Data is collected during the simulation runtime, 
allowing for real-time monitoring and debugging. 

By using the sampling utility, users can examine critical parameters such as 
velocity, pressure, turbulence properties, and other field variables at selected 
locations, which help in gaining insights into the correctness and stability of the 
numerical solution. 
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fluid – shockTube 

Tutorial outline 

Simulate the flow along a shock tube for 0.007 s and use OpenFOAM® sampling 
utility for extracting the data along a line during the simulation and after the 
simulation. 

Objectives 

• Understand the function of sampling and how to use the sampling utility 

Data processing 

Import your simulation to ParaView to visualize it and analyze the extracted 
data with sampling tool.   
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1. Pre-processing 

1.1. Copying tutorial 

To test the sampling feature, we will use the shockTube tutorial covered in 
Tutorial Three and extract data over a line between (-5 0 0) and (5 0 0).  

$FOAM_TUTORIALS/compressible/fluid/shockTube 

1.2. system directory 

1.2.1. sample dictionary 

The sample file can be found in the system directory.  

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

type sets; 

libs    (“libsampling.so”) 

 

interpolationScheme      cellPoint; 

 

setFormat   raw; 

 

sets 

( 

    data           

    { 

        type            lineUniform; 

        axis            x; 

        start           (-4.995 0 0); 

        end             (4.995 0 0); 

        nPoints         1000; 

} 

); 

 

fields                  (T mag(U) p); 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

In the type the type of data to be sampled is defined, e.g. sets or surfaces. 

The different options for interpolationScheme and setFormat will be 

discussed in a later section. 

In the sets sub-dictionary each set of data should be given a name, which is 

freely chosen by the user, in this case the name is simply ‘data’. In the bracket 

for the set of data, we need to specify the following criteria: 

- type: specifies the method of sampling. Here uniform was chosen to 

make a sample on a line with equally distributed number of points.  

- axis: to define how the point coordinates are written. In this case, x 

means that only the x coordinate for each point will be written.  

- Start/end: the endpoints of the line-sample are defined 

- nPoints: number of points on our line 

Outside of the data and sets bracket in the fields we have to define which 

fields we want to sample.  
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1.2.2. controlDict 

To have the option to sample for each time step instead of each write-interval 
or sampling while the solver is running; instead of the sample dictionary 
additions in the functions file (it can be also integrated into the controlDict) are 
needed. 

In this part one will change the functions file of the shockTube tutorial so that 
our line- sampling from before will be executed while running, and per time step. 

Modify the functions file as following: 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

… 

 

functions 

{ 

    #includeFunc mag(U) 

 

    linesample           

    { 

        type                      sets; 

        functionObjectLibs        (“libsampling.so”); 

        writeControl              timeStep; 

        outputInterval            1; 

 

 interpolationScheme      cellPoint; 

 

 setFormat   raw; 

 

 sets 

 ( 

    data           

     { 

         type             lineUniform; 

         axis            x; 

         start           (-4.995 0 0); 

         end             (4.995 0 0); 

         nPoints         1000; 

 } 

); 

 

fields                  (T mag(U) p); 

} 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

linesample sub-dictionary includes the settings for the sampling tool. Any 

arbitrary name can be chosen instead of linesample. The chosen name will 

be the name of the folder in the postProcessing directory after running the 
solver. 

Inside our linesample sub-dictionary: 

- type: sets or surfaces can be chosen. More types will be covered in a 

later section. 

- functionObjectLibs: provides the operations needed for the sampling 

tasks.  

- writeControl: specifies the intervals in which sampling data should be 

collected in the case of timeStep, depending on the outputInterval, 

sampling data will get saved in dependence of the timeStep. In the case 
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of outputInterval being equal to 1, every time step, sampling data will 

be saved. Changing the interval to 2 means that data will be saved every 
2 time steps.  

2. Running simulation 

To run the Tutorial go to your case directory in the terminal and use the following 
commands: 

>blockMesh 

>setFields 

>foamRun -solver fluid 

3. Post-processing 

After fluid solver finishes running, based on your sampling approach the 
following steps should be performed: 

3.1. sample dictionary 

It is also possible to use the sample command to extract your sample-data. 

>postProcess –func sample 

A new folder will appear in your case directory named postProcessing and in it 
a folder named sample. In this folder all the sampling data will be stored in 
separate folders for each write-interval. 

The postProcessing directory and all its subdirectories have been generated 
after the first time step. Now it can be seen that for every time step a folder is 
generated instead of only every write interval. 

Extracted data using sampling tool after 0.007 s 
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4. Types of sampling 

There are 2 main types of sampling. The sets type, which was used in our 
example above, and the surfaces type. 

In the sets type of sampling different kinds of point samplings, like the line 
sampling we used before, or some kind of cloud sampling are included. In the 
surface type whole surfaces are sampled, like near a patch, or on a plane 
defined by a point and a normal vector. 

Let us discuss the similarities between the set and surface types. If the 
sampling happens in the controlDict the 4 entries discussed in the controlDict 
section of this tutorial need to be included for both types. On top of that, both 
types need an interpolation scheme. Here only two of the schemes: cell and 
cellPoint will be discussed. The cell scheme assumes that the cell centre 

value as constant in the whole cell. The cellPoint scheme will carry out linear 

interpolation between the cell centre and vertex values. Lastly, the field bracket 
looks the same for both cases. 

4.1. sets 

All sets need a setFormat, for example csv, which needs to be included after 

the interpolationScheme. 

After that the sets sub-dictionary begins where a bracket with an arbitrary name 
begins in which the sets sampling type and the geometrical location of the 
sampling points will be chosen. In the following, a few of sampling types will be 
discussed. 

4.1.1. lineUniform 

This one was used in the above example. A line from a start point to an end 
point with a fixed number of points evenly distributed along it. 

axis determines what is written for the point coordinate in the output file. 

distance means it will only write the distance between sampled point and start 

point in the file. 

lineX1           

    { 

        type                      lineUniform; 

        axis                      distance; 

 

        start                     (0.0201  0.05101  0.00501); 

        end                       (0.0601  0.05101  0.00501); 

        nPoints                   10; 

} 

4.1.2. face 

This type also samples along a line from a defined start to endpoint, but only 
writes in the log file for every face the line cuts. 

lineX2           

    { 

        type                      face; 

        axis                      x; 

 

        start                     (0.0001  0.0525  0.00501); 

        end                       (0.0999  0.0525  0.00501); 
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} 

4.1.3. cloud 

The cloud type samples data at specific points defined in the point’s bracket. 

somePoints           

    { 

        type                      cloud; 

        axis                      xyz; 

        points                    ((0.049 0.049 0.00501)(0.051 0.049 0.00501)); 

} 

4.1.4. patchSeed 

The patchSeed sampling type is used for sampling patches of the type wall. 

One can for example sample the surface adsorption on a wall with this type. 

patchSeed 

    { 

        type        patchSeed; 

        axis        xyz; 

        patches     (".*Wall.*"); 

        maxPoints   100; 

} 

Please note that for patches only a patch of type wall can be used. If you choose 
a wrong type, nothing will be sampled and you receive no error message. 

4.2. surfaces 

All surfaces need a surfaceFormat specified. Practical formats would be the 

vtk format, which can be opened with paraview, and the raw format, which can 
be used for gnuplots. Instead of the sets bracket now a surfaces bracket must 

be used and the type is of course surfaces. Inside the surfaces brackets one 

can now sample an arbitrary number of surfaces, each in its own inner brackets. 
The different types of surface sampling like the plane in the example below will 

be discussed in the next sections. 

 type                 surfaces; 

         

       interpolationScheme  cellPoint; 

 surfaceFormat        vtk; 

 

        fields 

        ( 

            U 

        ); 

 

        surfaces 

        ( 

  yoursurfacename 

  { 

   type          plane;          

   basePoint     (0.1 0.1 0.1); 

   normalVector  (0.1 0 0); 

   triangulate   false; 

  } 

        ); 

4.2.1. plane 

The type plane creates a flat plane with an origin in the basePoint normal to 

the normalVector. This normalvector starts in the origin, not in the 



 

 

OpenFOAM® Basic Training 

Tutorial Fourteen 

 

basePoint. To turn the triangulation of the surface off one has to add 

triangulate false. 

constantPlane 

    { 

        type            plane;    // always triangulated 

        basePoint       (0.0501 0.0501 0.005); 

        normalVector    (0.1 0.1 1); 

 

        //- Optional: restrict to a particular zone 

        // zone        zone1; 

 

        //- Optional: do not triangulate (only for surfaceFormats that support 

        //            polygons) 

        //triangulate     false; 

        //interpolate     true; 

    } 

One can also set a new origin for the basePoint and normalVector with 

coordinateSystem 

        { 

            origin      (0.0501 0.0501 0.005); 

        } 

4.2.2. patch 

A sampling of type patch can sample data on a whole patch. Please note that 

while the syntax looks the same as in the patchSeed case, also patches that 

are not of type wall work. Default option will triangulate the surface; this can be 
turned off with triangulate false. 

walls_interpolated 

    { 

        type            patch; 

        patches         ( ".*Wall.*" ); 

        //interpolate     true; 

        // Optional: whether to leave as faces (=default) or triangulate 

        // triangulate     false; 

    } 

4.2.3. patchInternalField 

Similar to the patch type, this type needs a patch on which it samples. It will 

sample data that’s a certain distance away in normal direction (offsetMode 

normal). There is also the option to define the distance in other ways seen in 

the commented section of the code. 

Note: While the sampling happens not on the patch but a distance away from 
it, the geometric position of the sampled values in the output file will be written 
as the position of the patch. 

Once again the default triangulation can be turned off with triangulate false. 

nearWalls_interpolated 

    { 

        // Sample cell values off patch. 

        // Does not need to be the near-wall 

        // cell, can be arbitrarily far away. 

        type            patchInternalField; 

        patches         ( ".*Wall.*" ); 

        interpolate     true; 

 

 

        // Optional: specify how to obtain 

        // sampling points from the patch 
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        // face centres (default is 'normal') 

        // 

        //  //- Specify distance to 

        // offset in normal direction 

        offsetMode  normal; 

        distance    0.1; 

        // 

        //  //- Specify single uniform offset 

        //  offsetMode  uniform; 

        //  offset      (0 0 0.0001); 

        // 

        //  //- Specify offset per patch face 

        //  offsetMode  nonuniform; 

        //  offsets     ((0 0 0.0001) (0 0 0.0002)); 

 

        // Optional: whether to leave 

        // as faces (=default) or triangulate 

        // triangulate     false; 

    } 

4.2.4. triSurfaceSampling 

With the triSurfaceSampling type data can be sampled in planes which are 

provided as a trisurface stl file. To create such a file one can use the command 
below. The command will generate a .stl file of one (or more) of your patches. 

>surfaceMeshTriangulate name.stl -patches "(yourpatch)" 

Here your patch needs to be replaced with the name of one of your patches 
defined in the constant/polyMesh/boundary file. Starting the command without 
the patches option will generate a stl file of your whole mesh boundary. Next 
make a directory in the constant folder named triSurface if it does not already 
exist and copy the .stl file there. In the code, you now have to specify your stl 
file as the surface. For the source, the use of boundaryFaces seems to be a 

good option of the stl file is one of your patches. 

triSurfaceSampling 

    { 

        // Sampling on triSurface 

        type        sampledTriSurfaceMesh; 

        surface     integrationPlane.stl; 

        source      boundaryFaces;   

        // What to sample: cells (nearest cell) 

        // insideCells (only triangles inside cell) 

        // boundaryFaces (nearest boundary face) 

        interpolate true; 

    } 

Note: Most CAD software can export the surface of 3D drawings as stl files. 

4.2.5. isoSurface 

The isoSurface sampling type is quite different to what was discussed before 

in this tutorial. Until now, all the sampling types had a constant position in space 
and changing field values at that position were extracted. With the isoSurface 

sampling, one tracks the position of a defined value in space. The example 
below can be copied into the shocktube tutorials sample file (of course, it needs 
all the other options needed for surface type sampling). 

Using vtk for the surfaceFormat one can visualize the moving shockwave in 

space. Note that both the vtk of the sampling and the whole shocktube case 
can be opened together in paraview to compare the results. 
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Note that the isoField needs to be a scalarfield. 

interpolatedIso 

    { 

        // Iso surface for interpolated values only 

        type            isoSurface;     

        // always triangulated 

        isoField        p; 

        isoValue        9e4; 

        interpolate     true; 

 

        //zone            ABC;           

        // Optional: zone only 

        //exposedPatchName fixedWalls;   

        // Optional: zone only 

 

        // regularise      false;     

        // Optional: do not simplify 

         

        // mergeTol        1e-10;     

        // Optional: fraction of mesh bounding box 

        // to merge points (default=1e-6) 

    } 

4.2.6. isoSurfaceCell 

The isoSurfaceCell type is very similar to the one we discussed before, but 

this one does not cross any cell with its surface and does not interpolate values. 

constantIso 

    { 

        // Iso surface for constant values. 

        // Triangles guaranteed not to cross cells. 

        type            isoSurfaceCell;     

        // always triangulated 

        isoField        rho; 

        isoValue        0.5; 

        interpolate     false; 

        regularise      false;               

        // do not simplify 

        // mergeTol        1e-10;     

        // Optional: fraction of mesh bounding box 

        // to merge points (default=1e-6) 

    } 
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cat, more, less 

 

File viewer with pure read function - in order of ease of operation. In less with 
pagedown/pageup you can navigate within the file, with / and ? can look for 
strings, q can be used for closing less. cat is back for universally available on 
Unix. 

 

cd, cd .. 

 

Changing the directory, cd .. goes one directory up and cd ~ moves to home 
directory. Important to note is the space between cd and .. as opposed to DOS! 

 

cp, cp -r 

 

Copying files or entire directory trees (with -r option). Caution: There is no 
warning or prompt when overwriting existing files! The important thing is that a 
target has to be always given, at least one . which means, copy to the current 
directory. 

 

ctrl+r Reverse search, for searching an already typed command in a terminal window. 

 

du, du -s, 

du -k 

 

Calculates the amount of space consumed in a directory. For safety reasons you 
should use the -k option (output in kilobytes), since some systems provide the 
space in blocks that include only 512 bytes ... 

 

exit Closing connection (terminal window). 

  

gedit Text editor with graphical user interface. When working with gedit some 
temporary files (originalFileName~) are created, they can be deleted after 
saving. 

  

grep Search command for plain-text data sets for lines matching a regular expression.  

 

gzip, gunzip 

 

Compression/decompression program for individual files (as opposed to 
zip/unzip, this can also work on directories or file lists). The great advantage of 
gzip: Fluent® and OpenFOAM® are able to read and write gz files directly, which 
saves about 30-90% space. 

 

kill, kill -9 

 

Stopping processes. For this the process ID is required, which can be found with 
top or ps. The Exit is irrevocable course - but you cannot shoot processes, if 
you are not the "owner". 

 

ls, ls –la 

 

Lists the contents of a directory, with option -la also hidden files are displayed, 
as well as the file size and characteristics. 

 

mc Program that enables navigation in the text window, esc-keys, may be 
necessary: mc -c, for navigating through mc use function keys or esc+[number] 
combination, e.g. F9 or esc+9 for moving to the menus at the top. 
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mkdir 

 

 

Creates a new directory. 

 

mv Moving or renaming files and directories. Caution: There is no prompt when 
overwriting existing files!  

 

Nano, pico The command to run the nano text editor, a terminal based text editor. 

 

passwd 

 

The command to change the login password. 

 

| It is known as pipe and is used for merging two commands, redirecting one 
command as input to another, e.g. less|grep searches a specified word in the 
output of file opened with less. 

 

ps, ps –A 

ps waux  

 

Lists all the processes that were started in the respective command window with 
the options are all running processes on the system display. 

 

pwd 

 

Shows the current working directory. 

 

rm, CAUTION: 
rm -fr 

 

Deletes files. The option -r will also remove directories and files recursively and 
delete directories, f (force) prevents any further inquiry. - Incorrectly applied, this 
command can lead to irreversible loss of all (private) data. There is no undelete 
or undo! 

 

rmdir 

 

Deletes an empty directory. 

 

scp 

 

The copy command over the network - as secure FTP replacement. Also 
dominates the -r (recursive) option. Usage: scp source file destination file with 
source and the destination format can be USERNAME@ 
COMPUTER.DOMAIN:PATH/TO/FILE. Source or target can of course also be 
created locally, then (your) user name and computer are not required. 

 

ssh 

 

Telnet replacement with encryption. On Windows, for example, implemented 
with putty. 

 

tail, tail -f 

 

File viewer, the default outputs the last 10 lines of a file. With option -n XX can 
spend the last XX lines, with the -f option, the command is running from those 
lines, which are attached to a file. The command is therefore perfect for watching 
log files. 
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top Displays a constantly updated list of all running processes, with process ID, 
memory and CPU usage. For processes of one user top [username] should be 
used, and for quitting q or ctrl+c should be applied. 

 

vi, vim File editor. For forward searching use /, for backward searching use ?. For 
exiting esc+:x. nano or pico are recommended for beginners, which are easier 
to handle. 
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1. Running OpenFOAM® on a Local Linux PC (or virtual machine): 

• Open a terminal 

• Go to the OpenFOAM® installation directory (e.g. /opt/openfoam10) in 
the opened terminal 

• Change to the etc directory in the OpenFOAM® installation directory 

• Run the following command: 

>. ./bashrc 

• If a new terminal is opened, the same procedure should be repeated in 
that in order to activate OpenFOAM® in here. 

2. Running OpenFOAM® on Remote Computers via SSH (e.g. server): 

2.1. Windows:  

• Run PuTTY (search for: PuTTY windows). 

• Set the following: 

Category>Session  

Host name: openhost.university.edu 

Connection type: SSH 

Category>Connection>SSH>Tunnels 

Source port: 5901 

Destination: localhost:59**1 

• Do not forget to press Add! 

Please make sure that display is not used by others. 

Category>Connection>Data 

Auto-login username: openFoamUser2 

Category>Session 

Saved Sessions: openFoamUser 

• Press Save. 

• Now choose from “saved sessions” your session (openFoamUser) and 
press Open. In the opened Command (Prompt) window, it prompts for 

 

1 Display number  

2 Session ID  

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
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your password. The password is not echoed to the screen and the 
passwords are case sensitive. 

• Immediately after entering your password, your computer will attempt to 
establish a connection to your server. If it is your first time connecting to 
that server, you will see a message asking you to confirm the identity of 
the machine. Make sure you entered the address properly, and type 
yes, followed by the return key, to proceed.  

• Change to etc directory in OpenFOAM® installation directory 

• Execute the following command: 

>. ./bashrc 

• To log out use whatever command is used to logout from the server you 
are logged into (typically ctrl + d). 

 

2.2. Mac OS X and Linux: 

• Open your Terminal application. You will see a window with a $ or > 
symbol and a blinking cursor. From here, you may issue the following 
command to establish the SSH connection to your server (be careful 
about upper case ‘L’ in the -gL).  

>ssh -gL 5901:localhost:59** openFoamUser@university.edu 

• Immediately after issuing this command, your computer will attempt to 
establish a connection to your server. If it is your first time connecting to 
that server, you will see a message asking you to confirm the identity of 
the machine. Make sure you have entered the address properly, and 
type yes, followed by the return key, to proceed. 

• You will then be prompted to enter your password. Type or copy/paste 
your SSH user password into the Terminal. You will not see the cursor 
moving while entering your password. This is normal. Once you are 
finished inputting your password, press return on your keyboard. At this 
point, you will be connected to your server remotely through SSH.  

• Change to etc directory in OpenFOAM® installation directory 

• Execute the following command: 

>. ./bashrc 

 

2.2.1. Running OpenFOAM® in Graphical Interface (VNC): 

• Connect to remote machine via SSH connection using part B. 
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• Make sure VNC Server is installed on the remote machine and it is 
started (ask administrator for display number, port and other information, 
for starting VNC Server check FAQ) 

• Install the appropriate VNC Viewer and run it (search for: vnc viewer): 

VNC Server: localhost:01 

• Press Connect 

• Press Continue 

• Enter your password 

• Press Ok 

• On VNC desktop open a terminal  

• Change to etc directory in OpenFOAM® installation directory 

• Execute the following command: 

>. ./bashrc 

If a new terminal in the VNC desktop is opened, the last two steps should be 
done in that to activate OpenFOAM® in there. 

http://www.chip.de/downloads/RealVNC_12997724.html
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Q - What should I do in case of a GAMBIT failure? 

A -  e.g. Program stops responding: 

• Type "ps" in the command window, search for the GAMBIT process number. 

• "kill -9 PROCESS NUMBER" Enter 

GAMBIT creates lock files, which must also be deleted, otherwise it is not possible to 
open of the affected files:  

• "rm *. lok" Enter 

Furthermore, "junk" (temporary files from GAMBIT) should be disposed of: 

• "rm -fr GAMBIT.xxx" erases the complete directory, xxx again is the process 
number. 

• If you have forgotten, to save before the crash, you should copy the file "jou" (it 
contains all the commands that have been executed and can be processed 
automatically in GAMBIT) from the directory, to resume its status before the 
crash. 

Q -  How can I prevent typing long commands in the terminal for couple of times? 

A -  Using curser keys to navigate line by line. 

Type beginning of the command and use Tab (auto completion). 

By using reverse search, use ctrl+r to search for previous commands typed in the 
terminal, e.g. typing a part of command show the suggestions and you can navigate 
through them.  

 

Q -  My VNC is not responding from server side?  

A -  First you should kill your VNC server: 

>vncserver -kill :[YOUR DISPLAY NUMBER] 

Restart your VNC server (according to SSH forward): 

>vncserver:[YOUR DISPLAY NUMBER] -geometry 1600x800 -depth 24  

Q -  I have deleted some of my files accidently. What should I do? 

A -  Sorry, no recycling or undelete in Linux 

Q -  Why can I not connect to the server? 

A -  Check to see if you have an IP address for your network card. 

Q -  How can I start VNC Viewer from my Linux computer terminal? 

A -  Use command: 

>vncviewer :[NUMBER OF LOCAL PORT, e.g. 1 or 2] 
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Q -  Error “command not found”? 

A -  Make sure OpenFOAM® and ParaView are installed correctly. Check Appendix B for 
starting OpenFOAM®. 

 

Q -  Does foamToVTK command not work for chtMultiRegionFoam? 

A -  Use command: 

>foamToVTK -region[REGION NAME] 

 

Q -  Is it possible to export animations from ParaView? 

A -  Yes, by choosing .ogv file format from “file/save animation” menu. The output will be 
a video file with .ogv format. In the new ParaView versions (newer than 4.3.0) the 
animation can also be saved using .avi format. 

 

Q -  Is there any tool in Linux to convert series of ParaView pictures to video? 

A -  Yes, command line tool ffmpeg: 

>ffmpeg -r [FRAME  PER SECOND RATE] -f image2 -i [images names, e.g. 
rho.%4d.jpg] [OUTPUT FILE NAME].[OUTPUT FILE FORMAT, e.g avi] 

 

Q -  How can complex geometries be patched? 

A -  During creating the geometry in the preprocessing software, e.g. GAMBIT, create 
volume zones, which you will need to patch later (see software user manual for 
creating regions in each software). For converting the mesh to the OpenFOAM® 
mesh use the appropriate tool with “-writeZones” flag to import zones to 
OpenFOAM®, e.g.: 

>fluentMeshToFoam  -writeZones  <your mesh> 

then in the setFieldDict change it like this: 

 

regions 

( 

    zoneToCell 

    { 

        name air; // region name which you assigned in gambit 

        fieldValues 

        ( 

            volScalarFieldValue alpha.water 0 // the value of property   

                                              //which you want to patch 

        ); 

    } 

); 

 

Then after running setFields tool, it will assign the values to that region. 
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Q -  How can I create a bash scripting file for executing couple of command in series? 

A -  
Instead of typing command sequences one by one after each other and executing 
them. It is possible to put all those commands in a file and execute that file to run 
them. This is known as “bash scripting”.  
Bash scripting is typically used in the cases when the same simulation should be run 
with identical settings a couple of times, but with a few changes. For bash scripting 
create an empty file (e.g. using nano editor creating  text file “go”): 

> nano go 

Add the commands to this file (e.g. commands for running blockMesh, setFields, 
decomposePar, compressibleInterFoam in parallel mode and reconstructPar): 
 

blockMesh 

setFields 

decomposePar 

mpirun –np 4 compressibleInterFoam –parallel >log 

reconstructPar 

 
Exit the editor and save the file (ctrl+x , y, enter for nano editor). 
For changing this file to an executable file, file permissions should be set. By using 
this command file permissions are displayed: 

>ls -la go 

-rw-r--r-- 1 e166**** E020D166 73 Aug 23 9:15 go 

The first ‘r’ shows that this text file can be read by user, the ‘w’ shows that user has 
the permission to write this file, but the ‘–‘ sign shows that this file is not executable 
by the user. To change this permissions execute following command: 

>chmod u+x go 

Now this file is executable: 

>ls -la go 

-rwxr--r-- 1 e166**** E020D166 73 Aug 23 9:15 go 

Now you can run the simulation by this executable text file: 

>./go 

After executing the file, the commands added to the file will be executed one by one. 
In most of the OpenFOAM® tutorials there are Allrun and Allclean files, which are 
bash scripts for running the case and cleaning a case, respectively. 

 

Q -  How the cover mesh has been created? 

A -  Error: invalid question! 

 



Appendix D 

Paraview 

 

 

 

 

 

Bahram Haddadi 

 

 

 

 

7th edition, March 2025 

  



 

 

OpenFOAM® Basic Training 

Appendix D 

 

Contributors: 

• Bahram Haddadi 

• Christian Jordan 

• Michael Harasek 

• Sylvia Zibuschka 

• Yitong Chen 

• Jozsef Nagy 

 
 

Technische Universität Wien 

Institute of Chemical, Environmental 

& Bioscience Engineering 

 

 

 

 

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) 
This is a human-readable summary of the Legal Code (the full license). 
Disclaimer 
You are free: 

• to Share — to copy, distribute and transmit the work 

• to Remix — to adapt the work 
Under the following conditions: 

• Attribution — you must attribute the work in the manner specified by the author or 
licensor (but not in any way that suggests that, they endorse you or your use of the 
work). 

• Noncommercial — you may not use this work for commercial purposes. 

• Share Alike — if you alter, transform, or build upon this work, you may distribute the 
resulting work only under the same or similar license to this one.  

With the understanding that: 

• Waiver — any of the above conditions can be waived if you get permission from the 
copyright holder. 

• Public Domain — where the work or any of its elements is in the public domain under 
applicable law, that status is in no way affected by the license. 

• Other Rights — In no way are any of the following rights affected by the license: 

• Your fair dealing or fair use rights, or other applicable copyright exceptions and 
limitations; 

• The author's moral rights; 

• Rights other persons may have either in the work itself or in how the work is used, 
such as publicity or privacy rights. 

• Notice — for any reuse or distribution, you must make clear to others the license 
terms of this work. The best way to do this is with a link to this web page. 

 

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®  
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® 

trademark. 

 

Available from: www.fluiddynamics.at  



 

 

OpenFOAM® Basic Training 

Appendix D 

 

1. Introduction to ParaView 

The post-processing application for OpenFOAM® is ParaView, which is a free, 
open source program. In this tutorial, different features and tools available in 
ParaView 5.10.1 will be explored.  

 

ParaView Interface 

The tree structure (“pipeline”) of ParaView helps the user to easily choose and 
display suitable sub-models for creating the desired image or animation. Adding 
a mesh or velocity vectors to a contour plot of pressure is an example of this 
functionality. 

For generation operations, use the OpenFOAM® command foamToVTK to 
convert OpenFOAM® files into readable formats for ParaView. Then open the 
.vtk file and press the green Apply button in the Properties panel. The reset 
button is used for resetting the window and deleting the selected operation. 
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2. ParaView Interface 

2.1. Properties Panel 

 

Properties panel 

- Colouring 

The drop-down menu for solid colour allows different field variables to be 
chosen and viewed, for example, pressure and velocity magnitude.  

The Rescale button allows the data range to be adjusted to fit the data, as 
sometimes the max/min data range are not updated automatically.  

- Scalar Coloring 

The ‘Map Scalars’ option allows the scalar values to be mapped to a specific 
colour using a lookup table.  

Turning the option ‘Interpolate Scalars Before Mapping’ on or off will affect the 
way the scalar data is visualized with colours. According to the ParaView 
documentation, if it is turned on, scalars will be interpolated within polygons and 
colour mapping will happen on a per-pixel basis; if off, color mapping occurs at 
polygon points and colors are interpolated, which is generally less accurate[1]. 

- Styling 

The opacity of the image can be set (1 = solid, 0 = invisible) in the Opacity 
option. 

- Lighting 

There are two options for Interpolation, Gouraud or Flat. With Gouraud shading 
enabled, normals are defined only per point and no face normal is needed. If 
the Interpolation is changed to Flat, only the face normals will be computed and 
used for lighting, note that this option is not suitable for objects with smooth 
surfaces [2].  
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- Backface Styling 

This is an advanced feature in ParaView that enables the backface style of a 
wire frame object to be changed.  

- Transforming 

The Transform filter allows you to translate, rotate and change the size and the 
origin of the data sets.  

- Miscellaneous 

By default ParaView triangulate the cells and shows them as triangles. For 
disabling this uncheck the “Triangulate” option in the Miscellaneous section of 
the Properties panel. 

- Glyph Parameters 

The Glyth Parameters filter generates a glyph, which can be arrow, cone, box, 
cylinder, line, sphere or a 2D glyph. The glyth is generated at each point in the 
input dataset[3]. Depending on the type of glyph chosen, different options are 
available to orientate, scale and size the glyph. 

- Orientation Axes 

The Orientation Axes feature controls an axes icon in the image window (e.g. 
to set the color of the axes labels x, y and z). 

- Lights 

The lighting controls options appear when clicking on the Edit button. For 
producing images with strong bright colors (e.g. isosurface) Headlight of 
strength 1 is appropriate. 

- Background 

The background color of the layout can be chosen from the drop-down menu, 
with types Single color, Gradient and Image available. 

2.2. Button toolbars 

 

Button toolbars 

Pull-down menus at the top of the main window and the major panels, in the 
toolbars below the main pull-down menus increase the functionality of 
ParaView. The function of each button can be easily understood by its icon, 
also any button description can be found in the Help menu (keeping the mouse 
over an icon without clicking on it will also give a short explanation on its 
functionality). 

A feature worth mentioning is the drop-down menu next to the Reset button, 
this provides the options of the different ways of presenting the mesh. To see 
the structure of the mesh, use Surface with Edges; and to see both the cell 
structure and the interior of the mesh, use Wireframe.  
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2.3. Color Map Editor Panel 

 

Color map editor 

The Choose preset button allows the color scheme of the scale to be chosen, 
a common color scheme used is Blue to Red Rainbow. The Rescale to custom 
range button allows the maximum and minimum values of the color scale to be 
freely chosen by the user.  

Another important feature can be used by clicking the button Edit color legend 
properties on the top right of the panel, this allows the scale title, font style to 
be changed.  

3. Manipulating the view 

3.1. Contour plots 

Clicking on the Contour button in the Button Toolbars creates a contour plot. 
The contour filter operates on any type of data set, but requires the input to 
have at least one point-centered scalar (single-component) array. The output 
of this filter is polygonal. 

The chosen scalar field can be selected from a pull down menu. If the case is 
a 3D case module, the contours will be a set of 2D surfaces that represent a 
constant value. The Isosurfaces list in the Properties panel allows the user to 
specify the values at which the isosurfaces are computed.  

3.2. Introducing a cutting plane 

Creating contour plots across a plane is more convenient than isosurfaces. 
Cutting planes are the tools which can be used for this purpose, to create 
surfaces. This can be done by clicking on the Slice button in the Button 
Toolbars. A cutting plate can be manipulated and repositioned. In a similar way, 
the contour lines can also be derived out of planes. 

By default ParaView triangulate the cells and shows them as triangles. For 
disabling this uncheck “triangulate the slice” option in the Properties panel of 
the slice. 
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3.3. Streamlines 

To create tracer lines, click on the Stream Tracer button in the Button Toolbars. 
Tracer points can be along a line or points, and this can be chosen in the Seed 
Type drop-down menu in the Seeds section of the Properties panel. Usually, 
some trial and error is needed for achieving the desired streamlines. The length 
of steps tracer takes can be changed in the Streamline Parameters section of 
the Properties panel. A smaller length increases calculation time but increases 
smoothness. For having high quality images Tubes filter can be used after 
tracer lines have been created. There are different types of tubes, not only 
cylindrical. 

3.4. Vector plots 

The Glyph filter is used for creating vector plots. Scale Mode menu in the 
properties panel is used for:  

- Setting the length of a vector, weather to be proportional to vector 
magnitude or not, all with the same length (Vector). 

- Controlling the base length of the glyphs (set Scale Factor). 

4. Data Analysis 

4.1. Plot over time 

This option is available by clicking the Plot Selection Over Time button in the 
Button Toolbars. This allows the data at one point to be plotted over the entire 
time range.  

4.2. Plot over line 

This option allows the data points to be plotted along a line at a specific time 
step. Click on the Plot Over Line button. The Cartesian coordinates of the 
beginning and ending points of the line can be specified in the Properties panel. 
Several variables can be plotted at the same time, to turn each variable on or 
off and to change its legend name, use the Series Parameters section in the 
Properties panel.  

4.3. Integrate Variables 

The Integrate Variables option is selected from the Filters menu. This tool 
integrates point and cell data over lines and surfaces. It also computes length 
of lines, area of surface, or volume[4]. Different data types available are Point 
Data, Cell Data, or Field Data; this can be chosen in the Field Association 
section in the Properties panel.  

5. Exporting Data 

5.1. Image Output 

For creating a screenshot of the graphs, the easiest way is Save Screenshot 
from File menu. After selecting it in the opened window, the picture resolution 



 

 

OpenFOAM® Basic Training 

Appendix D 

 

can be set, and by locking the aspect ratio, changing image resolution in one 
direction cause change in its resolution in the other direction respectively. For 
high quality images, a resolution of more than 1000 pixels is a good choice. 

5.2. Animation Output 

Some animations can be saved in ParaView by selecting the Save animation 
option in the File menu. The resolution and number of frames per time step can 
be specified. You can save your animation by assigning a name and choosing 
the file format. The most suitable file format is .ogv. 

5.3. Data Output 

The field values of a chosen variable (e.g. temperature or pressure) can be 
exported into Excel using the Save Data option in the File menu. The precision 
of the writer can be chosen and there is an option to export data from all time 
steps.  


