

OpenFOAM® Basic Training

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Editorial board:

• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Technische Universität Wien
Institute of Chemical, Environmental

& Bioscience Engineering

Cover picture from:
• Bahram Haddadi

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such

as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license terms

of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at
This book has been used as a basis for preparing a series of video lectures

on youtube by Jozsef Nagy (JKU Linz):
www.youtube.com/channel/UCjdgpuxuAxH9BqheyE82Vvw

(Search for: Jozsef Nagy OpenFOAM at youtube.com)

OpenFOAM® Basic Training

Preface

In this OpenFOAM® tutorial series, we have prepared fourteen case examples that are designed to
help users to learn the key utilities and features within OpenFOAM®, including mesh generation,
multiphase modeling, turbulence modeling, parallel processing and reaction modeling. The base
tutorial examples can be imported directly from the OpenFOAM® installation directory.

The tutorials should be primarily used for OpenFOAM® versions 7.0 and v1906, with differences in
the running procedure between v1906 and 7.0 highlighted in blue boxes. So, simply ignore the blue
boxes if you are running in version 7.0! The structure of each case example follow the below
general structure:

 Background: an introduction about the key topics explored in the tutorial and the relevant CFD

theory
1. Pre-processing: instructions on how to set up the correct case structure for a given problem

using base case tutorials, with explanations on relevant dictionaries
2. Running simulation: instructions on running the solver and its associated commands
3. Post-processing: examining the results in OpenFOAM®’s post-processing application,

ParaView V5.6.0

OpenFOAM® Basic Training

Table of Contents

Tutorial One: Basic Case Setup
Solver: icoFoam
Geometry: 2-dimensional
Tutorial: elbow

Tutorial Two: Built in Mesh
Solver: rhoPimpleFoam
Geometry: 2-dimensional
Tutorial: forwardStep

Tutorial Three: Patching Fields
Solver: rhoPimpleFoam
Geometry: 1-dimensional
Tutorial: shockTube

Tutorial Four: Discretization – Part 1
Solver: scalarTransportFoam
Geometry: 1-dimensional
Tutorial: shockTube

Tutorial Five: Discretization – Part 2
Solver: scalarTransportFoam
Geometry: 2-dimensional
Tutorial: circle

Tutorial Six: Turbulence, Steady state
Solver: simpleFoam
Geometry: 2-dimensional
Tutorial: pitzDaily

Tutorial Seven: Turbulence, Transient
Solver: pisoFoam
Geometry: 2-dimensional
Tutorial: pitzDaily

Tutorial Eight: Multiphase
Solver: interFoam
Geometry: 2-dimensional
Tutorial: damBreak

OpenFOAM® Basic Training

Table of Contents

Tutorial Nine: Parallel Processing
Solver: compressibleInterFoam
Geometry: 3-dimensional
Tutorial: depthCharge3D

Tutorial Ten: Residence Time Distribution
Solver: simpleFoam, scalarTransportFoam
Geometry: 3-dimensional
Tutorial: TJunction

Tutorial Eleven: Reaction
Solver: reactingFoam
Geometry: 3-dimensional
Tutorial: reactingElbow

Tutorial Twelve: snappyHexMesh – Single Region
Solver: snappyHexMesh, scalarTransportFoam
Geometry: 3-dimensional
Tutorial: flange

Tutorial Thirteen: snappyHexMesh – Multi Region
Solver: snappyHexMesh, chtMultiRegionFoam
Geometry: 3-dimensional
Tutorial: snappyMultiRegionHeater

Tutorial Fourteen: Sampling
Solver: sonicFoam
Geometry: 3-dimensional
Tutorial: shockTube

Appendix A: Important Commands in Linux

Appendix B: Running OpenFOAM®

Appendix C: Frequently Asked Questions (FAQ)

Appendix D: ParaView

Tutorial One

Basic Case Setup

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial One

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Clemens Gößnitzer
• Jozsef Nagy
• Vikram Natarajan
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the
work).

- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used,

such as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial One

Background

1. What is CFD?

Computational fluid dynamics or CFD is the analysis of systems involving fluid flow,
heat transfer and associated phenomena such as chemical reactions by means of
computer-based simulation. The technique is very powerful and its application spans a
wide range of industrial and non-industrial areas.

The ultimate aim of developments in the CFD field is to provide a capability
comparable to other CAE (computer-aided engineering) tools such as stress analysis
codes. The main reason why CFD has lagged behind is the tremendous complexity of
the underlying behavior of fluid flows.

Although CFD has lots of advantages, it is not yet at the level where it can be blindly
used without a working knowledge of the physics involved, and despite the increasing
speed of computation available, CFD has not yet matured to a level where it can be
used for real time computation. Numerical analyses require significant time to be set
up and performed. CFD is still an aid to other analysis and experimental tools like
wind tunnel testing, and is used in conjunction with them. So be careful!

The two most common types of CFD codes are:

• open and free
• closed source and commercial

We will be focusing on OpenFOAM®, which is a free, open source CFD code, written
in C++. In addition, its source code is accessible and modifiable by its users. So, you
can even develop your own OpenFOAM® solver if you wish to!

2. Workflow of CFD

A CFD procedure is structured around the numerical algorithms that can tackle fluid
flow problems, and the workflow mostly contains three main elements:

2.1. Pre-processing

• Definition of the geometry of the region of interest: the computational domain
• Grid generation – the sub-division of the flow region into a number of smaller,

non-overlapping sub-domains: a grid (or mesh) of cells (or control volumes or
elements)

• Selection of suitable models for the interesting physical and chemical
phenomena

• Definition of fluid properties
• Specification of the appropriate chemical and physical boundary conditions at

cells which coincide with or touch the domain boundary

The solution to a flow problem (velocity, pressure, temperature etc.) is defined at
nodes or cell centers inside each cell. The accuracy of a CFD solution depends

OpenFOAM® Basic Training

Tutorial One

heavily on the number of cells in the grid. In general, the larger the number of cells,
the better the solution accuracy. Optimal meshes are often non-uniform: finer in areas
where large variations occur from point to point and coarser in regions with relatively
little change.

2.2. Solver

There are at least four distinct streams of numerical solution techniques: finite
difference, finite element, spectral methods and finite volume. We will only focus on
the finite volume method, as it is central to the most well-established CFD solvers. In
outline, the finite volume method consists of the following steps:

1. Integration of the conservation of mass, energy and momentum equations over
all the control volumes in the domain

2. Discretization – conversion of the resulting integral equations into a system of
algebraic equations

3. Solution of the algebraic equations by an iterative method

The first step, the control volume integration, makes the finite volume method
different from all other CFD techniques. It makes sure that a general flow variable,
e.g. momentum or enthalpy, is conserved in each finite size cell. This clear
relationship between the numerical algorithm and the underlying conservation
principle makes finite volume method popular and much simpler to understand.

2.3. Post-processing

This is where you take a look at the results and visualize them so that you can see
what happens in your model. Typical elements of post-processing are:

• Definition of suitable cutting planes for visualization
• Contour plots of properties/flow variables
• Vector plots
• Streamlines
• Line plots
• Balances

There are several post-processing tools; fluent built-in post-processing tool, ensight
and TecPlot are some well-known commercial examples. There are also some open
source tools such as Paraview and SALOME.

3. icoFoam solver

icoFoam is an OpenFOAM® solver suitable for analyzing incompressible, laminar
flow of Newtonian fluids. It is based on the PISO algorithm (pressure-implicit split-
operator), which is essentially a pressure-velocity iterative procedure for transient
problems. In each iterative step, PISO solves the momentum equation using one
predictor step, with two further corrector steps for both velocity and pressure.

OpenFOAM® Basic Training

Tutorial One

icoFoam – elbow

Tutorial outline

Using icoFoam solver, simulate 75 s of flow in an elbow for the following GAMBIT®
meshes:

• Tri-mesh (comes with OpenFOAM® tutorial)

• Hex-mesh coarse (check GAMBIT® “elbow 2D” tutorial)

• 2 times finer hex-mesh (refined previous step mesh)

Objectives

• Basic case setup in OpenFOAM®

• Setting up initial values of p and U

• Ensuring proper boundary definitions (imported boundaries from GAMBIT®,
additional surfaces during conversion and boundaries definition in OpenFOAM®)

Data processing

Import your simulation to ParaView, extract data to make two diagrams (using
spreadsheet calculators) of pressure and velocity magnitude along a line between two
tubes, do the same for all three simulations.

OpenFOAM® Basic Training

Tutorial One

1. Pre-processing
1.1. Setting system environment

Make sure your system environment is set correctly under the chosen version of
OpenFOAM® (e.g. V7.0 and v1906), check Appendix B Part A.

1.2. Copying tutorial

Open a terminal and copy the elbow tutorial from the following path to your working
directory (see Appendix A for running a terminal in Linux):

$FOAM_TUTORIALS/incompressible/icoFoam/elbow

Note: The ‘$’ sign allows the tutorial to be extracted from the installation directory
of OpenFOAM® under the current system environment.

1.3. Converting mesh

The mesh which is produced by GAMBIT® is not directly compatible with
OpenFOAM®. First, the mesh needs to be converted to an OpenFOAM® mesh, using
the following tool:

>fluentMeshToFoam elbow.msh

Note: the ‘>’ sign is not part of the command. It is only used to show that the
command should be typed inside a terminal.

If the mesh was created in mm and is converted using the mentioned command it will
convert the mesh with wrong dimensions, since all the units in OpenFOAM® are SI1
Units. There are different flags included with most of OpenFOAM® tools, for
checking them use the flag -help after the command, e.g.:

>fluentMeshToFoam --help

The output gives an overview of available options of the tool and also a short
description on how to use it:

Usage: fluentMeshToFoam [OPTIONS] <Fluent mesh file>
options:
 -2D <thickness> use when converting a 2-D mesh (applied before scale)
 -case <dir> specify alternate case directory, default is the cwd
 -fileHandler <handler>
 override the fileHandler
 -libs <(lib1 .. libN)>
 pre-load libraries
 -noFunctionObjects
 do not execute functionObjects
 -scale <factor> geometry scaling factor - default is 1
 -writeSets write cell zones and patches as sets
 -writeZones write cell zones as zones
 -srcDoc display source code in browser
 -doc display application documentation in browser
 -help print the usage

Using: OpenFOAM-7 (see https://openfoam.org)
Build: 7

1 International System of Units

OpenFOAM® Basic Training

Tutorial One

The -scale flag is used for converting the mesh dimensions from other units to SI
units, e.g. if the mesh was created in mm it will be converted to meter by using -
scale 0.001 and if the flag is omitted, uses 1:

>fluentMeshToFoam elbow.msh -scale 1.0

Note: The mesh which is imported to OpenFOAM® should be a three dimensional
mesh. For carrying out 2D (also 1D) simulations a three-dimensional mesh should be
created with just one cell in the third dimension (for 1D, one cell in the second and
also one cell in the third direction).

Note: If there are internal boundaries in the mesh, there is another tool,
fluent3DMeshToFoam. Using this tool, the internal boundaries will be kept during
conversion.

1.4. Case structure

Most of the cases in OpenFOAM® have the following basic case structure (directory
tree):

There are three main directories (0, constant, system) in each case foloder:

1.4.1. 0 directory

The 0 directory includes the initial conditions for running the simulation. In each file
in this folder the initial conditions for one property can be set. The files are named
after the property they are standing for, e.g. usually T file includes temperature initial

OpenFOAM® Basic Training

Tutorial One

conditions. In the elbow example there are only two files inside the 0 directory, p and
U. p stands for pressure and U stands for velocity. Checking p:

>nano1 p

It will be like this:

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Website: https://openfoam.org
\\ / A nd	Version: 7
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 object p;
}
// *
* * * * * *//

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField
{
 wall-4
 {
 type zeroGradient;
 }

 velocity-inlet-5
 {
 type zeroGradient;
 }

 velocity-inlet-6
 {
 type zeroGradient;
 }

 pressure-outlet-7
 {
 type fixedValue;
 value uniform 0;
 }

 wall-8
 {
 type zeroGradient;
 }

 frontAndBackPlanes
 {
 type empty;
 }
}
// *
* * * * * *//

1 nano is a text editor used in Linux OS (for closing and saving: ctrl+x)

OpenFOAM® Basic Training

Tutorial One

In dimensions, the physical dimension according to SI base units of the quantity is
defined, for example here it shows that the p dimension is (m/s)2.

Note: As you can see the p unit is not the pressure unit (Pa). It is due to the fact that
in incompressible solvers in OpenFOAM® p is defined as “reduced” pressure divided
by density.

Note: In the dimension matrix the first number represents mass (kilogram), the second
one the length (meter), the third one time (second), the forth one the temperature
(Kelvin), the fifth one the quantity (mole), the sixth one current (ampere) and the last
one luminous intensity (candela).

The internalField sets the initial field of a specific quantity in the solution
domain. There are two types: uniform and non-uniform. Uniform field assigns a
single value to all elements, whereas non-uniform field specifies a unique value to
each field element.

The type of each of our boundaries as well as the value of this quantity on the
boundaries is defined in the boundaryField. There are different types of boundary
conditions in OpenFOAM®:

- zeroGradient: Applies a zero gradient boundary type to this boundary
(Neumann boundary condition).

- fixedValue: Applies a fixed value to this boundary (Dirichlet boundary
condition).

- empty: It is for sides, which are vertical to the direction that is not going to be
considered (e.g. in 2D simulations these boundaries are vertical to the third
dimension). In this boundary type both of the sides vertical to one dimension
should be selected together and named as one boundary.

Note: If a fixedValue boundary condition with value equals $internalField is
used, it is equal to using zeroGradient, except zeroGradient applies the
boundary condition implicitly, but fixedValue with $internalField value
applies the boundary condition explicitly.

The U file has to be defined via three components (since velocity is a vector): first one
stands for the x component, second one for the y component, and the third one for the
z component. For this case setup the z component is always zero because it is a 2D
simulation and no calculations will be done in the z direction. The boundaries vertical
to z direction have been already set to empty.

1.4.2. constant directory
The constant directory usually consists of a subdirectory and some files. The files
(usually) include material properties, simulation physics and chemistry. In the
directory “polyMesh” the mesh data are stored (in this case the data for converted
mesh). The boundary file in this polyMesh directory includes the mesh boundary data,
e.g. type, the patch group, number of faces on this boundary and also starting face

OpenFOAM® Basic Training

Tutorial One

number (unique face IDs) for this boundary (for the sake of space, the dictionary
headers will not be included in this scope any more):

// *
* * * * * *//

6
(
 wall-4
 {
 type wall;
 inGroups List<word> 1(wall)
 nFaces 100;
 startFace 1300;
 }
 velocity-inlet-5
 {
 type patch;
 nFaces 8;
 startFace 1400;
 }
…
 frontAndBackPlanes
 {
 type empty;
 inGroups List<word> 1(empty);
 nFaces 1836;
 startFace 1454;
 }
)

// *
* * * * * *//

OpenFOAM® v1906: the inGroups does not have the type “List<word>” in the front
of the group name.

Comparing the boundary names with the ones set in GAMBIT®, they should be the
same. Starting cell number and also number of each face cells can also be checked
here.

Note: However, in terms of boundary type, empty boundary condition does not exist in
GAMBIT®. All the faces perpendicular to the direction which is not going to be
considered are defined as a new boundary with type wall. After converting the mesh
to OpenFOAM® mesh, modify that boundary in the file constant/polyMesh/ boundary,
and change its type from wall to empty, and also change inGroups from wall to
empty. In this case, after converting the mesh, the face frontAndBackPlanes
needs to be modified for both hex-mesh and finer hex-mesh.

By opening the transportProperties file, properties dimensions and also the property
value can be found and edited (in v1906 no dimensions are listed), e.g.:

nu [0 2 -1 0 0 0 0] 0.01;

nu is the fluid kinematic viscosity, which is 0.01 m2/s for this example.

OpenFOAM® v1906: Just nu and its value are listed – no dimensions!

OpenFOAM® Basic Training

Tutorial One

1.4.3. system directory
Solver and finite volume methods settings can be found and changed in this directory.
There are three main files in this directory:

- fvSchemes: The discretization scheme which is used for each term of the
equations are set in this file.

- fvSolution: Contains the settings to the coupling method of pressure and velocity,
the numerical methods, which are used for solving different quantities, and also
the final tolerance for convergence of that quantity.

- controlDict: The time from where simulation starts (startFrom), the time when
the simulation finishes (stopAt), the time step (deltaT), the data saving interval
(writeInterval), the saved data file format (writeFormat), the saved file
data precision (writePrecision), and also if changing the files during the run
can affect the run or not (runTimeModifiable) are set in this file.

Note: If the write format is ascii, then the simulation data which is written to the file
can be opened and read using any text editor. If the format is binary, the data will
be written in binary style and is not readable by text editors. The advantage of
binary over ascii is the smaller file size, and consequently faster conversion and
writing to disk, for big simulations.

// *
* * * * * *//
application icoFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 75;

deltaT 0.05;

writeControl timeStep;

writeInterval 20;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

// *
* * * * * *//

Changed from 10 to 75 for
75 s of simulation

OpenFOAM® Basic Training

Tutorial One

Note: This simulation continues from the last time step data which is saved
(latestTime). If there was no saved data it will start from start time (startTime),
which is zero in this case.

2. Running simulation
The simulation can be run by typing the solver’s name and executing it:

>icoFoam

Note: For running the simulation the solver command (e.g. icoFoam) should be
executed inside the copy of the tutorial main folder. For example: The command
should be executed in the elbow folder, if it was run at some subfolders or somewhere
else, the simulation will fail.

3. Post-processing
3.1. Exporting simulation data
The data files created by OpenFOAM® should be exported (converted) by the
appropriate tools, to the post processing tools data format. For ParaView:

>foamToVTK

where VTK is the ParaView data format. This command should be also executed in
the case main directory, e.g. elbow. Here, ParaView is used as the post-processing
tool, for running it

>paraview &

Note: There is also another option to open the OpenFOAM® simulation results with
ParaView without converting them to VTK; Create an empty text file in the main case
directory, name it <someName>.foam (e.g. foam.foam), and execute the following
command. This method is good for fast evaluation of the data in the middle of the
simulation or with a decomposed case in parallel simulations:

>paraview foam.foam &

Note: By putting & at the end of command, the command line will remain active and
ready for further inputs while that program is running.

3.2. Examining different meshes
Do the same for the other two meshes. Only the mesh for the first simulation is
included in the elbow example of OpenFOAM®. For the other two simulations the
mesh should be provided by the user. For finding the tutorials on how to create the
geometry and the mesh, search the internet for “GAMBIT® elbow mesh 2D”. The
dimensions and also the mesh info are provided in that tutorial. Try to create it by
using GAMBIT®. When you are done you have to convert it into a 3D mesh with 1
cell in the z-direction.

The comparisons of all three case results and charts are shown below.

OpenFOAM® Basic Training

Tutorial One

The Hex Fine mesh created using GAMBIT®

Pressure and velocity for different meshes at t=75 s, along the arc shown

OpenFOAM® Basic Training

Tutorial One

The comparison plots are along the line between points A (54 0 0) at the small tube
entrance and B (60 60 0) at the large tube exit part (length units are in meter) for Tri-
mesh, for other two meshes created using GAMBIT® the points are A (22 -33 0) and
B (27 30 0).

Mesh Pressure Velocity

Tri

Hex

Hex
Fine

Comparison of different mesh type results at t = 75 s

OpenFOAM® Basic Training

Tutorial One

Note: For extracting data over a line, the line should be defined in ParaView using
“Plot Over Line”, then the data over this line can be exported by choosing Save Data
from File menu in ParaView.

Tutorial Two

Built in Mesh

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Two

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Clemens Gößnitzer
• Jozsef Nagy
• Vikram Natarajan
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such

as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license terms

of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Two

Background

1. What is mesh?

The partial differential equations that describe fluid flow and heat transfer are the conservation
equations of mass, energy and momentum. However we are usually unable to solve them
analytically, except in very simple cases. This is when discretization comes in. The flow region is
broken up into smaller sub-regions, with the equations solved in each sub-region. One of the
methods used to solve the equations is the finite volume method, which we will cover in detail
below. The sub-regions are later on referred to as grid cells, with a collection of grid cells forming a
mesh.

2. Finite volume method

As discussed in Tutorial One, OpenFOAM® uses finite volume method. The starting point of this
method is the transport equation for a conserved fluid property φ, for example pressure and flow
velocity. It is shown below as:

𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜌𝜌𝜌𝜌𝒖𝒖) = ∇ ∙ (𝛤𝛤∇𝜌𝜌) + 𝑆𝑆𝜑𝜑

Rate of change of
φ inside fluid +
element

Net rate of flow
of φ out of =
fluid element

Rate of change
of φ due to +
diffusion

Rate of change
of φ due to
sources

As you can see, the transport equation is essentially a manifestation of conservation of a fluid flow
property within the problem domain.

The key step of the finite volume method is the integration of the transport equation over a three-
dimensional control volume (CV). At discrete places values are calculated on a meshed geometry.
The small volume which surrounds each node of the mesh is the grid cell.

In each grid cell, the volume integral of the divergence term is replaced by a surface integral, using
the Gauss divergence theorem. These terms are then evaluated as fluxes at the surfaces. This not
only ensures the conservation of fluxes entering and exiting the grid cell, but allows for easy
formulation of the balances on unstructured meshes.

In time-dependent problems, it is also necessary to integrate with respect to time t over a small
interval ∆𝜕𝜕 from, say, 𝜕𝜕 until 𝜕𝜕 + ∆𝜕𝜕. This yields the most general integrated form of the transport
equation.

�
𝜕𝜕
𝜕𝜕𝜕𝜕
�� 𝜌𝜌𝜌𝜌

𝐶𝐶𝐶𝐶
𝑑𝑑𝑑𝑑�𝑑𝑑𝜕𝜕

∆𝑡𝑡
+ � � 𝒏𝒏 ∙ (𝜌𝜌𝜌𝜌𝒖𝒖)

𝐴𝐴
𝑑𝑑𝑑𝑑𝑑𝑑𝜕𝜕

∆𝑡𝑡

= � � 𝒏𝒏 ∙ (𝛤𝛤∇𝜌𝜌)
𝐴𝐴

𝑑𝑑𝑑𝑑𝑑𝑑𝜕𝜕
∆𝑡𝑡

+ � � 𝑆𝑆𝜑𝜑𝑑𝑑𝑑𝑑
𝐶𝐶𝐶𝐶

𝑑𝑑𝜕𝜕
∆𝑡𝑡

OpenFOAM® Basic Training

Tutorial Two

3. Discretization of transport equations

Discretization of the transport equations is critical to the finite volume method, as it provides a
more cost-effective and rapid approach to numerical evaluation on digital computers. Discretization
is done through the use of the mesh, which involves dividing the domain into smaller regions.

The mesh used in OpenFOAM® can be simple grid structures based on the Cartesian co-ordinate
system, or complex unstructured grid arrangement that can handle curvature and geometric
complexity. The mesh is generated using the in-house OpenFOAM® tool (blockMesh and
snappyHexMesh) or external software, such as GAMBIT®. In this tutorial, we are going to learn
how to use the blockMesh tool in OpenFOAM®. Refer to Tutorial Twelve for information on the
snappyHexMesh tool.

For this tutorial, we chose to run the sonicFoam solver, which is slightly more complicated than
icoFoam, as it analyses the flow of a compressible gas/fluid.

4. rhoPimpleFoam solver

rhoPimpleFoam is a transient solver. It solves trans-sonic/supersonic, turbulent flow of a
compressible gas/fluid.

OpenFOAM® v1906: sonicFoam should be used for compressible trans-sonic/supersonic
simulations!

OpenFOAM® Basic Training

Tutorial Two

rhoPimpleFoam – forwardStep

Tutorial outline

Using rhoPimpleFoam solver, simulate 10 s of flow over a forward step.

OpenFOAM® v1906: use sonicFoam!

Objectives

• Understand blockMesh

• Define vertices via coordinates as well as surfaces and volumes via vertices.

Data processing

Import your simulation into ParaView, and examine the mesh and the results in detail.

OpenFOAM® Basic Training

Tutorial Two

1. Pre-processing
1.1. Copying tutorial
Copy the tutorial from the following folder to your working directory:

$FOAM_TUTORIALS/compressible/rhoPimpleFoam/laminar/forwardStep

OpenFOAM® v1906:
$FOAM_TUTORIALS/compressible/sonicFoam/laminar/forwardStep

1.2. Case structure

1.2.1. 0 directory
The file T includes the initial temperature values. Internal pressure and temperature fields are set to
1, and the initial velocity in the domain as well as the inlet boundary is set to 3.

Note: As it can be seen, the p unit is the same as the pressure unit (kg m-1 s-2), because
rhoPimpleFoam/sonicFoam is a compressible solver.

Note: Do not forget that, this example is a purely numeric example (you might have noticed this
from the pressure values).

1.2.2. constant directory
By checking thermophysicalProperties file, different properties of a compressible gas can be set:

// *//
thermoType
{
 type hePsiThermo;
 mixture pureMixture;
 transport const;
 thermo hConst;
 equationOfState perfectGas;
 specie specie;
 energy sensibleInternalEnergy;
}
// Note: these are the properties for a “normalized” inviscid gas
// for which the speed of sound is 1 m/s at a temperature of 1K
// and gamma = 7/5
mixture
{
 specie
 {
 molWeight 11640.3;
 }
 thermodynamics
 {
 Cp 2.5;
 Hf 0;
 }
 transport
 {
 mu 0;
 Pr 1;
 }
}

// *//

OpenFOAM® Basic Training

Tutorial Two

In the thermoType, the models for calculating thermo physical properties of gas are set:

- type: Specifies the underlying thermos-physical model.

- mixture: Is the model which is used for the mixture, whether it is a pure mixture, a
homogeneous mixture, a reacting mixture or ….

- transport: Defines the used transport model. In this example a constant value is used.

- thermo: It defines the method for calculating heat capacities, e.g. in this example constant heat
capacities are used.

- equationOfState: Shows the relation which is used for the compressibility of gases. Here
ideal gas model is applied by selecting perfectGas.

- energy: This key word lets the solver decide which type of energy equation it should solve,
enthalpy or internal energy.

After defining the models for different thermos-physical properties of gas, the constants and
coefficients of each model are defined in the sub-dictionary mixture. E.g. molWeight shows the
molecular weight of gas, Cp stands for heat capacity, Hf is the heat of fusion, mu is the dynamic
viscosity and Pr shows the Prandtl number.

By opening the turbulenceProperties the appropriate turbulent mode can be set (in this case it is
laminar):

simulationType laminar;

1.2.3. system directory
In this tutorial the mesh is not imported from other programs (e.g. GAMBIT®). It will be created
inside OpenFOAM®. For this purpose the blockMesh tool is used. blockMesh reads the geometry
and mesh properties from the blockMeshDict file (found in the system directory):

>nano blockMeshDict

// *//
convertToMeters 1;
vertices
(
 (0 0 -0.05)
 (0.6 0 -0.05)
 (0 0.2 -0.05)
 (0.6 0.2 -0.05)
 (3 0.2 -0.05)
 (0 1 -0.05)
 (0.6 1 -0.05)
 (3 1 -0.05)
 (0 0 0.05)
 (0.6 0 0.05)
 (0 0.2 0.05)
 (0.6 0.2 0.05)
 (3 0.2 0.05)
 (0 1 0.05)
 (0.6 1 0.05)
 (3 1 0.05)
);
blocks
(

OpenFOAM® Basic Training

Tutorial Two

 hex (0 1 3 2 8 9 11 10) (25 10 1) simpleGrading (1 1 1)
 hex (2 3 6 5 10 11 14 13) (25 40 1) simpleGrading (1 1 1)
 hex (3 4 7 6 11 12 15 14) (100 40 1) simpleGrading (1 1 1)
);
edges
(
);
boundary
(
 inlet
 {
 type patch;
 faces
 (
 (0 8 10 2)
 (2 10 13 5)
);
 }
 outlet
 {
 type patch;
 faces
 (
 (4 7 15 12)
);
 }
 bottom
 {
 type symmetryPlane;
 faces
 (
 (0 1 9 8)
);
 }
 top
 {
 type symmetryPlane;
 faces
 (
 (5 13 14 6)
 (6 14 15 7)
);
 }
 obstacle
 {
 type patch;
 faces
 (
 (1 3 11 9)
 (3 4 12 11)
);
 }
);

mergePatchPairs
(
);
// *//

As noted before units in OpenFOAM® are SI units. If the vertex coordinates differ from SI, they can
be converted with the convertToMeters command. The number in the front of
convertToMeters shows the constant, which should be multiplied with the dimensions to change
them to meter (SI unit of length). For example:

convertToMeters 0.001;

shows that the dimensions are in millimeter, and by multiplying them by 0.001 they are converted
into meters.

OpenFOAM® Basic Training

Tutorial Two

In the vertices part, the coordinates of the geometry vertices are defined, the vertices are stored
and numbered from zero, e.g. vertex (0 0 -0.05) is numbered zero, and vertex (0.6 1 -0.05)
points to number 6.

In the block part, blocks are defined. The array of numbers in front each block shows the block
building vertices, e.g. the first block is made of vertices (0 1 3 2 8 9 11 10).

After each block the mesh is defined in every direction. e.g. (25 10 1) shows that this block is
divided into:

- 25 parts in x direction

- 10 parts in y direction

- 1 part in z direction

As it was explained before, even for 2D simulations the mesh and geometry should be 3D, but with
one cell in the direction, which is not going to be solved, e.g. here number of cells in z direction is
one and it’s because of that it’s a 2D simulation in x-y plane.

The last part, simpleGrading(1 1 1) shows the size function.

In the boundary part each boundary is defined by the vertices it is made of, and also its type and
name are defined.

Note: For creating a face the vertices should be chosen clockwise when looking at the face from
inside of the geometry.

2. Running simulation
Before running the simulation the mesh has to be created. In the previous step the mesh and the
geometry data were set. For creating it the following command should be executed from the case
main directory (e.g. forwardStep):

>blockMesh

After that, the mesh is created in the constant/polyMesh folder. For running the simulation, type the
solver name form case directory and execute it:

>rhoPimpleFoam

OpenFOAM® v1906: >sonicFoam

3. Post-processing
The mesh is presented in the following way in ParaView, and you can easily see the three blocks,
which were created.

OpenFOAM® Basic Training

Tutorial Two

Mesh generated by blockMesh

Note: When a cut is created by default in ParaView, the program shows the mesh on that plane as a
triangular mesh even if it is a hex mesh. In fact, ParaView changes the mesh to a triangular mesh
for visualization, where every square is represented by two triangles. For avoiding this when
creating a cut in ParaView in the Slice properties window, uncheck “Triangulate the Slice”.

The simulation results are as follows:

Time Pressure Velocity Temperature

0.5 s

1 s

10 s

Pressure, velocity and temperature contours at different time steps

Tutorial Three

Patching Fields

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Three

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Clemens Gößnitzer
• Jozsef Nagy
• Vikram Natarajan
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such

as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license terms

of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Three

Background

1. Initial and Boundary Conditions

Before running the numerical solver, it is important to set up initial and boundary conditions
correctly for the problem. Ill-defined boundary conditions will result in non-convergence or
incorrect results.

The initial conditions provide the starting values for the solver and once specified, the value is put
into the center of every cell in the whole domain. As the solver starts to run, the initial values will
be replaced by newly calculated values. Any starting values can be used for 1st iteration. However
the better the initial values, the faster the convergence. Initial conditions are mandatory for transient
problems, but not absolutely required for steady state problems.

On the other hand we need to also provide boundary conditions. These will connect the simulation
models with its surroundings. The values specified are located at the boundary faces of the domain,
where their solution will be kept unchanged during the simulation, as the solver will not calculate
them. Most boundary conditions are either steady state or transient.

In OpenFOAM®, we can use the setFields utility to specify a non-uniform initial condition, and this
will be the focus of Tutorial Three. In addition, the boundary conditions are specified in the files in
the 0 directory.

2. Courant-Friedrichs-Lewy (CFL) condition

In this tutorial, we will create meshes with 100, 1000 and 10000 cells in one dimension. However,
one cannot simply increase the number of cells (i.e. decrease the cell size) without changing the
time step size accordingly. This is because when running a numerical scheme (e.g. the Gauss linear
scheme; more details can be found in Tutorials Four and Five), the solution is reached using the
information propagated by waves or particles from one cell to the adjacent cell. To ensure a
physical solution it is essential that the physical flow information e.g. velocity, composition, etc. is
received by all cells within the calculation domain. It needs to be guaranteed that the information
transport does not “overtake” the physical transport, otherwise the scheme will be unable to access
the information required to form the solution.

The above criteria is known as the Courant-Friedrichs-Lewy (CFL) condition, and it is a necessary
condition for convergence. For one-dimensional problems, it can be written as:

𝐶𝐶𝐶𝐶 =
𝑢𝑢∆𝑡𝑡
∆𝑥𝑥

≤ 1

The key dimensionless number here is the Courant number, 𝐶𝐶𝐶𝐶, which needs to be less or equal to
one.

Note: u is the velocity magnitude of compound in the 1D direction, Δt is the simulation time step
size and Δx is the mesh size in the 1D direction.

As it is obvious from the equation by decreasing the mesh size (i.e. ∆𝑥𝑥), the time step size (∆𝑡𝑡)
should also be adjusted (decreased) for reaching a stable and convergent solution. Therefore the
CFL condition is useful in helping us choose a suitable time step size for our simulation. A common

OpenFOAM® Basic Training

Tutorial Three

way of selecting the time step size is to keep Courant number at 1, using the maximum possible u
and the smallest possible mesh size, a Δt that fits the criteria can be calculated.

OpenFOAM® Basic Training

Tutorial Three

rhoPimpleFoam – shockTube

Simulation

Use the rhoPimpleFoam solver; simulate 0.007 s of flow inside a shock tube, with a mesh with 100,
1000 and 10000 cells in one dimension, for initial values 1 bar/0.1 bar and 10 bar/0.1 bar.

OpenFOAM® v1906: use sonicFoam!

Objectives

• To understand the setFields utility

• Learn how to specify initial and boundary conditions

• Investigate effect of grid resolution

Data processing

Import your simulation into ParaView, and compare results.

OpenFOAM® Basic Training

Tutorial Three

1. Pre-processing

Open tutorial
Copy the tutorial from the following directory to your working directory

$FOAM_TUTORIALS/compressible/rhoPimpleFoam/laminar/shockTube

OpenFOAM® v1906: $FOAM_TUTORIALS/compressible/sonicFoam/laminar/shockTube

OpenFOAM® v1906: Create a copy of 0.orig folder and rename it to 0!

system directory
Looking at the blockMeshDict file, it is obvious that it is a 1D mesh, because of the number of mesh
cells in y and z directions is one, and also in boundary section, plates vertical to these directions
are defined as empty. The mesh density can be set in the blocks part by changing x direction
mesh size (e.g. change it from 1000 to 100 or 10000).

Another important file is setFieldsDict, which is used by the tool setFields for patching (assign
an amount to a region) in the simulation. For example, here a pressure of 1 bar is set as the default
value for the entire region (from -5 to 5 in x direction), then half of the region (from 0 to 5) is
patched with a pressure of 0.1 bar.

// *//

defaultFieldValues (volVectorFieldValue U (0 0 0) volScalarFieldValue T 348.432
volScalarFieldValue p 100000);

regions (boxToCell { box (0 -1 -1) (5 1 1) ; fieldValues (volScalarFieldValue T
278.746 volScalarFieldValue p 10000) ; });

// *//

In the defaultFieldValues, a value is assigned to the whole domain, for example here, the
velocity has been set everywhere to zero, the temperature to 348.432 K, and the pressure to
100000 Pa. In the regions, a specific value is patched to a certain region of the domain. In this
example the region is defined as a cube, by the coordinates of one of its diagonals in boxToCell .

After choosing the region, the new values are assigned to the parameters (e.g. temperature at
278.746 K and pressure at 10000 Pa).

2. Running simulation

First the mesh needs to be created:

>blockMesh

In order to assign the values which were set in the setFieldDict:

>setFields

Then run:

OpenFOAM® Basic Training

Tutorial Three

>rhoPimpleFoam

OpenFOAM® v1906: >sonicFoam

Note: In the 10000 cell case with 10 bar and 0.1 bar, the simulation will crash with the default
deltaT (1e-5); after checking the same case with 1000 cells, you will find that the maximum Co is
around 0.6 (Time = 0.001):

Courant Number mean: 0.0508555 max: 0.589018

In the case with 10000 cells, the number of cells is increased by factor 10, so the cell size is reduced
by factor 10. For keeping the Courant number in the same range (around 0.6), according to the
“Background” section, deltaT should be decreased by factor 10. After reducing it to 1e-6 the
simulation will run smoothly.

Note: After running setFields for the first time, the files in the 0 directory are overwritten. If the
mesh is changed these files are not compatible with the new mesh and the simulation will fail. To
solve this problem replace the files in the 0 directory with the files in the 0.orig or the files with
suffix “.orig”, e.g. p.orig in the 0 directory. In the OpenFOAM® files or directories with suffix
“.orig” (“original”) usually contain the backup files. If a command changes the original files these
files can be replaced.

3. Post-processing

The simulation results are as follows:

OpenFOAM® Basic Training

Tutorial Three

Velocities for different configurations along tube at t = 0.007 s

Velocity along tube axis for 10 bar/0.1bar and 10000 cells case at t = 0.007 s

OpenFOAM® Basic Training

Tutorial Three

Pressures for different configurations along tube at t = 0.007 s

 Pressure along tube axis for 10 bar/0.1bar and 10000 cells case at t = 0.007 s

OpenFOAM® Basic Training

Tutorial Three

 Temperature for different configurations along tube at t = 0.007 s

Temperature along tube axis for 10 bar/0.1bar and 10000 cells case at t = 0.007 s

Tutorial Four

Discretization – Part 1

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Four

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Clemens Gößnitzer
• Jozsef Nagy
• Vikram Natarajan
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the
work).

- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used,

such as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Four

Background
1. Discretizing general transport equation terms

Tutorial Four aims to help the users understand the different discretization schemes in
OpenFOAM®. But before that, it is important to understand the exact mathematical
procedures involved in discretization. Below is a detailed explanation of how each
term of the transport equation is discretized.

1.1. Time derivative

Discretization of the time derivative such as 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 of the transport equation is
performed by integrating it over the control volume of a grid cell. Here, the Euler
implicit time differencing scheme is explained. It is unconditionally stable, but only
first order accurate in time. Assuming linear variation of φ within a time step gives:

 �
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑉𝑉

≈
𝜕𝜕𝑃𝑃𝑛𝑛𝜕𝜕𝑃𝑃𝑛𝑛 − 𝜕𝜕𝑃𝑃0𝜕𝜕𝑃𝑃0

∆𝜕𝜕
𝑑𝑑𝑃𝑃

Where 𝜕𝜕𝑛𝑛 ≡ 𝜕𝜕 (𝜕𝜕 + ∆𝜕𝜕) stands for the new value at the time step we are solving for
and 𝜕𝜕0 ≡ 𝜕𝜕(𝜕𝜕) denotes old values from the previous time step.

1.2. Convection term

Discretization of convection terms is performed by integrating over a control volume
and transforming the volume integral into a surface integral using the Gauss's theorem
as follows:

� 𝒏𝒏 ∙ (𝜕𝜕𝜕𝜕𝒖𝒖)
𝐴𝐴

𝑑𝑑𝑑𝑑 ≈�𝒏𝒏 ∙ (𝑑𝑑𝜕𝜕𝒖𝒖)𝑓𝑓𝜕𝜕𝑓𝑓 =
𝑓𝑓

�𝐹𝐹𝜕𝜕𝑓𝑓
𝑓𝑓

Where F is the mass flux through the face 𝑓𝑓 defined as 𝐹𝐹 = 𝒏𝒏 ∙ (𝑑𝑑𝜕𝜕𝒖𝒖)𝑓𝑓. The value 𝜕𝜕𝑓𝑓
on face f can be evaluated in a variety of ways which will be covered later in
section 2. The subscript 𝑓𝑓 refers to a given face.

1.3. Diffusion term

Discretization of diffusion terms is done in a similar way to the convection terms.
After integration over the control volume, the term is converted into a surface
integral:

� 𝒏𝒏 ∙ (𝛤𝛤∇𝜕𝜕)
𝐴𝐴

𝑑𝑑𝑑𝑑 = �𝛤𝛤𝑓𝑓(𝒏𝒏 ∙ ∇𝑓𝑓𝜕𝜕)𝑑𝑑𝑓𝑓
𝑓𝑓

Note that the above approximation is only valid if Γ is a scalar. Here, ∇𝑓𝑓𝜕𝜕 denotes the
gradient at the face, 𝑑𝑑 denotes the surface area of the control volume and 𝑑𝑑𝑓𝑓 denotes
the area of a face for the control volume. It does not, however, imply a specific

OpenFOAM® Basic Training

Tutorial Four

discretization technique. The face normal gradient can be approximated using the
scheme:

𝒏𝒏 ∙ ∇𝑓𝑓𝜕𝜕 =
𝜕𝜕𝑁𝑁 − 𝜕𝜕𝑃𝑃

|𝒅𝒅|

This approximation is second order accurate when the vector 𝒅𝒅 between the center of
the cell of interest P and the center of a neighboring cell N is orthogonal to the face
plane, i.e. parallel to A. In the case of non-orthogonal meshes, a correction term could
be introduced which is evaluated by interpolating cell centered gradients obtained
from Gauss integration.

1.4. Source term

Source terms, such as 𝑆𝑆𝜕𝜕of the transport equation, can be a general function of φ.
Before discretization, the term is linearized:

𝑆𝑆𝜕𝜕 = 𝜕𝜕𝑆𝑆𝐼𝐼 + 𝑆𝑆𝐸𝐸

where 𝑆𝑆𝐸𝐸 and 𝑆𝑆𝐼𝐼 may depend on φ. The term is then integrated over a control volume
as follows:

� 𝑆𝑆𝜕𝜕𝑑𝑑𝑑𝑑
𝑉𝑉

= 𝑆𝑆𝐼𝐼V𝑃𝑃φ𝑃𝑃 + 𝑆𝑆𝐸𝐸V𝑃𝑃

There is some freedom on exactly how a particular source term is linearized. When
deciding on the form of discretization (e.g. linear, upwind), its interaction with other
terms in the equation and its influence on boundedness and accuracy should be
examined.

2. Discretization Schemes

Since the results of CFD simulations are typically stored at the cell centers, it is
important to interpolate the results from cell centers to the face centers, to obtain the
fluxes for the surface integrals in the transport equation. For each term of the transport
equation, there is a variety of discretization/interpolation schemes available.

In general, interpolation needs a flux F through a general face f, and in some cases,
one or more parameters 𝛾𝛾. The face value 𝜕𝜕𝑓𝑓 can be evaluated from the values in the
neighboring cells using a variety of schemes. The flux satisfies continuity constraints,
which is prerequisite to obtaining the results.

2.1. First Order Upwind Scheme

In first order upwind scheme we define φ as follows:

Note: Here we define two faces, 𝑒𝑒 and 𝑤𝑤. To obtain flux through faces e and w, we
need to look its neighbouring values at P/E and W/P respectively. The subscripts
denote the face at which the face value 𝜕𝜕 or the flux F is located at.

 𝜕𝜕𝑒𝑒 = 𝜕𝜕𝑃𝑃 𝑖𝑖𝑓𝑓,𝐹𝐹𝑒𝑒 > 0

OpenFOAM® Basic Training

Tutorial Four

 𝜕𝜕𝑒𝑒 = 𝜕𝜕𝐸𝐸 𝑖𝑖𝑓𝑓,𝐹𝐹𝑒𝑒 < 0

First Order Upwind Scheme

𝜕𝜕𝑤𝑤 is also defined similarly (Positive direction is from W to E).

2.2. Central Differencing Scheme

Here, we use linear interpolation for computing the cell face values.

𝜕𝜕𝑒𝑒 =
𝜕𝜕𝐸𝐸 + 𝜕𝜕𝑃𝑃

2
, 𝜕𝜕𝑤𝑤 =

𝜕𝜕𝑃𝑃 + 𝜕𝜕𝑊𝑊
2

Central Differencing Scheme

2.3. QUICK

QUICK stands for Quadratic Upwind Interpolation for Convective Kinetics. In the
QUICK scheme 3 point upstream-weighted quadratic interpolation are used for cell
face values.

When 𝐹𝐹𝑒𝑒 > 0, φ𝑒𝑒 =
6
8
φ𝑃𝑃 +

3
8
φ𝐸𝐸 −

1
8
φ𝑊𝑊

When 𝐹𝐹𝑤𝑤 > 0, φ𝑤𝑤 =
6
8
φ𝑊𝑊 +

3
8
φ𝑃𝑃 −

1
8
φ𝑊𝑊𝑊𝑊

OpenFOAM® Basic Training

Tutorial Four

QUICK scheme

Similar expressions can be obtained for 𝐹𝐹𝑒𝑒 < 0 and 𝐹𝐹𝑤𝑤 < 0.

Now that you know a bit more about discretization schemes, we can move on to the
tutorial. In this tutorial the scalarTransportFoam solver is used. More explanation of
this solver can be found below.

4. scalarTransportFoam solver

scalarTransportFoam is a basic solver which resolves a transport equation for a
passive scalar. The velocity field and boundary condition need to be provided by the
user. It works by setting the source term in the transport equation to zero (see equation
below), and then solving the equation.

𝜕𝜕(𝜕𝜕𝜕𝜕)
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜕𝜕𝜕𝜕𝒖𝒖) − ∇ ∙ (𝛤𝛤∇𝜕𝜕) = 0

OpenFOAM® Basic Training

Tutorial Four

scalarTransportFoam – shockTube

Simulation

Use the scalarTransportFoam solver, simulate 5 s of flow inside a shock tube, with 1D
mesh of 1000 cells (10 m long geometry from -5 m to 5 m). Patch with a scalar of 1
from -0.5 to 0.5. Simulate following cases:

• Set U to uniform (0 0 0). Vary diffusion coefficient (low, medium and high
value).

• Set the diffusion coefficient to zero and also U to (1 0 0) and run the
simulation in the case of pure advection using following discretization
schemes:

- upwind

- linear

- linearUpwind

- QUICK

- cubic

Objectives

• Understanding different discretization schemes.

Data processing

Import your simulation into ParaView, and plot temperature along tube length.

OpenFOAM® Basic Training

Tutorial Four

1. Pre-processing
1.1. Compile tutorial
Create a folder in your working directory:

>mkdir shockTube

Copy the following case to the created directory:

$FOAM_TUTORIALS/compressible/rhoPimpleFoam/laminar/shockTube

OpenFOAM® v1906:
$FOAM_TUTORIALS/compressible/sonicFoam/laminar/shockTube

In the 0 directory, create a copy of T.orig and U.orig and rename them to T and U
respectively. In the constant directory delete the thermophysicalProperties and
turbulenceProperties files, and in the system directory delete all the files except for
blockMeshDict and setFieldsDict files.

OpenFOAM® v1906: Create a copy of 0.orig folder, rename it to 0 and delete the p
file in 0 directory!

From the following case:
$FOAM_TUTORIALS/basic/scalarTransportFoam/pitzDaily

Copy transportProperties file from constant folder in the newly created case constant
folder. Copy controlDict, fvSchemes and fvSolution from the above case system
directory to the created case system directory.

1.2. constant directory
The diffusion coefficient can be set in the transportProperties file. For a low value try
0.00001, for a medium value use 0.01 and for a high value use 1:

DT DT [0 2 -1 0 0 0 0] 0.01;

Note: By setting the diffusion coefficient to zero, the case will be switched to a pure
advection simulation with no diffusion.

OpenFOAM® v1906: Just DT and its value are listed – no dimensions!

1.3. system directory
Edit the setFieldsDict, to patch the T field to 1.0 between -0.5 m and 0.5 m and to set
the U to (0 0 0) for the whole domain. For setting U in the whole domain to (1 0 0),
just change (0 0 0) to (1 0 0):

// *
* * * * * *//
defaultFieldValues
(

OpenFOAM® Basic Training

Tutorial Four

volVectorFieldValue U (0 0 0)
volScalarFieldValue T 0.0

);
regions
(

boxToCell
{

box (-0.5 -1 -1) (0.5 1 1);

fieldValues
(

volScalarFieldValue T 1.0
);

}
);
// *
* * * * * *//

In the controlDict, update the endTime to 5 for 5s of simulation. As it was
mentioned before, the discretization scheme for each operator of the governing
equations can be set in fvSchemes.

// *
* * * * * *//
ddtSchemes
{
 default Euler;
}

gradSchemes
{
 default Gauss linear;
}

divSchemes
{
 default none;
 div(phi,T) Gauss linearUpwind grad(T);
}

laplacianSchemes
{
 default none;
 laplacian(DT,T) Gauss linear corrected;
}

interpolationSchemes
{
 default linear;
}

snGradSchemes
{
 default corrected;
}

// *
* * * * * *//

For each type of operation a default scheme can be set (e.g. for divSchemes is set to
none, it means no default scheme is set). Also a special type of discretization for each
element can be assigned (e.g. div(phi,T) it is set to linearUpwind). For each
element, where a discretization method has not been set, the default method will be
applied. If the default setting is none, no scheme is set for that element and the
simulation will crash.

OpenFOAM® Basic Training

Tutorial Four

Note: In fvSchemes, the schemes for the time term of the general transport equation
are set in ddtSchemes sub-dictionary. divSchemes are responsible for the
advection term schemes and laplacianSchemes set the diffusion term schemes.

Note: divSchemes should be applied like this: Gauss + scheme. The Gauss keyword
specifies the standard finite volume discretization of Gaussian integration which
requires the interpolation of values from cell centers to face centers. Therefore, the
Gauss entry must be followed by the choice of interpolation scheme
(www.openfoam.org).

2. Running simulation
>blockMesh
>setFields
>scalarTransportFoam

3. Post-processing
The simulation results are as follows.
A) Case with zero velocity (pure diffusion):

Pure diffusion with low diffusivity (0.00001) at t = 5 s

Pure diffusion with medium diffusivity (0.01) at t = 5 s

OpenFOAM® Basic Training

Tutorial Four

Pure diffusion with high diffusivity (1) at t = 5 s

B) Case with pure advection (diffusion coefficient = 0):

Scalar T along tube at t = 4 s

The cubic scheme predicted an unexpected rise in temperature between around 0 to 1
m, which differs hugely from the other schemes. This can be explained by looking at
the numerical behavior of the cubic scheme. It is operated in fourth order accuracy
with unbounded solutions, which caused another false root solution to be found. So,
higher order accuracy does not always generate better results!

Tutorial Five

Discretization – Part 2

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Five

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Clemens Gößnitzer
• Jozsef Nagy
• Vikram Natarajan
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such

as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license terms

of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Five

Background

1. Properties of discretization schemes

Let’s explore some fundamental properties of discretization schemes. These properties are required
for our numerical results to be physically realistic. An understanding of these properties will help
the users to choose the appropriate discretization schemes for their model.

1.1. Conservativeness

Integration of the convection–diffusion equation over a finite number of control volumes yields a
set of discretized conservation equations involving fluxes of the transported property φ through
control volume faces. To ensure conservation of φ for the whole solution domain the flux of φ
leaving a control volume across a certain face must be equal to the flux of φ entering the adjacent
control volume through the same face. To achieve this flux through a common face must be
represented in a consistent manner – by one and the same expression – in adjacent control volumes
of each face.

1.2. Boundedness

Normally we use iterative numerical techniques to solve discretized equations at each nodal point.
The methods start with a guessed distribution of the initial conditions of the variable φ and perform
successive updates until a converged solution is obtained.

The sufficient condition for a converged solution is:

∑|𝑎𝑎𝑛𝑛𝑛𝑛|
|𝑎𝑎᾿𝑃𝑃| �≤ 1 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

< 1 𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎 𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛𝑎𝑎

Here 𝑎𝑎᾿𝑃𝑃 is the net coefficient of the central node P (i.e. 𝑎𝑎᾿𝑃𝑃 − 𝑆𝑆𝑃𝑃), 𝑎𝑎𝑛𝑛𝑛𝑛 are the coefficient of the
neighbouring nodes. If the condition is satisfied, the resulting matrix of coefficients is diagonally
dominant. We need the net coefficients to be as large as possible, this means that 𝑆𝑆𝑃𝑃 should be
always negative. If this is the case, 𝑆𝑆𝑃𝑃 becomes positive due to the modulus sign and adds to 𝑎𝑎𝑃𝑃.

1.3. Transportiveness

To understand transportiveness, one should look at a dimensionless number called the Peclet
number, 𝑃𝑃𝑛𝑛. It measures the relative strengths of convection, 𝑁𝑁𝑐𝑐𝑜𝑜𝑛𝑛𝑜𝑜 and diffusion, 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.

𝑃𝑃𝑛𝑛 =
𝑁𝑁𝑐𝑐𝑜𝑜𝑛𝑛𝑜𝑜
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝐿𝐿𝐿𝐿
𝐷𝐷

Note: L is a characteristic length scale, U is the velocity magnitude, D is a characteristic diffusion
coefficient.

The primary goal is to ensure that the transportiveness is borne out of the discretization scheme.

Let’s consider the effect at a point P due to two constant sources of φ at nearby points W and E on
either side, in three cases.

OpenFOAM® Basic Training

Tutorial Five

1) When Pe = 0 (pure diffusion), the countours

of φ are circles, as φ is spread out evenly in
all directions

2) As Pe increases, the contours become
elliptical, as the values of φ are influenced by
convection

3) When Pe→∞, the countours become straight
lines, since φ are stretched out completely
and affected only by upstream conditions

2. Assessing the general discretization schemes

It is useful to compare the different types of general discretization schemes covered in Tutorial Four
based on their conservativeness, boundedness and transportiveness properties.

Different discretizing schemes assessment

Scheme Conser
-vative Bounded Accuracy Trans-

portive Remarks

Upwind
 Yes Unconditionally

bounded First order Yes

Include false diffusion if
the velocity vector is not

parallel to one of the
coordinate directions

Central
Differencing Yes

Conditionally
bounded⃰

Second order No Unrealistic solutions at
large Pe number

QUICK Yes Unconditionally
bounded Third order Yes

Less computationally
stable. Can give small

undershoots and
overshoots

⃰ Pe should be less than 2.

3. Numerical (false) diffusion

Numerical diffusion is a multidimensional phenomenon and it occurs when the flow is not
perpendicular to the grid lines. It is a numerically introduced diffusion and arises in convection
dominated flows, i.e. high Pe number flows.

Transportiveness property

OpenFOAM® Basic Training

Tutorial Five

4. Numerical behavior of OpenFOAM® discretization schemes

The choice of discretization scheme for this tutorial should depend critically on the numerical
behaviour of the scheme. Using higher order schemes, numerical diffusion errors can be reduced,
however it requires higher computational efforts.

Scheme Numerical behaviour
upwind First order, bounded
linear Second order, unbounded
linearUpwind First/second order, bounded
QUICK Second order or higher, bounded
cubic Fourth order, unbounded

First-order
upwind

Second-order
upwind

8 × 8

64 × 64

 Numerical diffusion

OpenFOAM® Basic Training

Tutorial Five

scalarTransportFoam – circle

Simulation

Use the scalarTransportFoam solver, do simulate the movement of a circular scalar spot region
(radius = 1 m) at the middle of a 100 × 100 cell mesh (10 m × 10 m), then move it to the right
(3 m), to the top (3 m) and diagonally.

 Schematic sketch of the problem

Objectives

• Choosing the best discretization scheme.

Data processing

Examine your simulation in ParaView.

OpenFOAM® Basic Training

Tutorial Five

1. Pre-processing

1.1. Compile tutorial
Create the new case in your working directory like in tutorial four.

1.2. 0 directory

To move the circle to right change the internalField to (1 0 0) in the U file for setting the
velocity field towards the right. Modify U at suitable times, to obtain a velocity field which will
move the circle up and also diagonally.

1.3. constant directory

In the transportProperties, set DT to zero (no diffusion!).

1.4. system directory
Modify the blockMeshDict for creating a 2D geometry with 100 × 100 cells mesh.

// *//
convertToMeters 1;

vertices
(
 (-5 -5 -0.01)
 (5 -5 -0.01)
 (5 5 -0.01)
 (-5 5 -0.01)
 (-5 -5 0.01)
 (5 -5 0.01)
 (5 5 0.01)
 (-5 5 0.01)
);
blocks
(
 hex (0 1 2 3 4 5 6 7) (100 100 1) simpleGrading (1 1 1)
);
edges
(
);
boundary
(
 sides
 {
 type patch;
 faces
 (
 (1 2 6 5)
 (0 4 7 3)
 (3 7 6 2)
 (0 1 5 4)
);
 }
 empty
 {
 type empty;
 faces
 (
 (5 6 7 4)
 (0 3 2 1)
);
 }
);
// *//

OpenFOAM® Basic Training

Tutorial Five

Choose a discretization scheme based on the results from the previous example and set it in the
fvSchemes.

In the setFieldsDict patch a circle to the middle of the geometry using the following lines.

// *//

defaultFieldValues (volScalarFieldValue T 0);

regions
(

cylinderToCell
{
 p1 (0 0 -1);

p2 (0 0 1);
 radius 0.5;
 fieldValues

(
volScalarFieldValue T 1

) ;
}

);

// *//

cylinderToCell command is used to patch a cylinder to the region, p1 and p2 show the two
ends of cylinder center line, in the radius the radius is set.

Check controlDict, in the first part of simulation, where the circle should move to the right set the
startFrom to startTime and startTime to 0. By a simple calculation it can be seen that the
endTime should be 3 s (to move the circle from center to the right side). Similar calculations need
to be done for the two other parts, except the startTime is set to the endTime of previous part,
and new endTime should be that part “simulation time” plus endTime of the previous part.

2. Running Simulation

>blockMesh
>setFields
>scalarTransportFoam

For running the further parts (moving the circle to top, and then diagonally) change the velocity
field in the last time step directory, i.e. change the velocity in the time step directory 3 to (0 1 0) so
the circle moves up, further change the velocity in the directory 6 to (-1 -1 0) to move the circle
diagonally back to the original position.

After moving the circle to the right and changing the velocity field, the simulation is resumed. It can
be seen that the circle does not go up but moves to the right. This occurs due to the fact that
OpenFOAM® used the previous time step fluxes (phi) to do the calculations. We can solve this
problem by deleting phi file from the latest time step (of the previous part of simulation, e.g. 3). In
this way, OpenFOAM® creates new fluxes based on the new velocity field that we just updated. So,
easily delete phi and enjoy!

3. Post-processing
The simulation results are as follows:

OpenFOAM® Basic Training

Tutorial Five

1 s 2 s 3 s

4 s 5 s 6 s

7 s 8 s 9 s

 Position of the circle at different time steps

Tutorial Six

Turbulence – Steady State

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Six

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Clemens Gößnitzer
• Jozsef Nagy
• Vikram Natarajan
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the
work).

- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used,

such as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Six

Background

1. Why turbulence modeling?

Many engineering applications are turbulent. Turbulence is a highly transient
phenomenon, characterized by a wide range of eddy sizes. One can solve these eddies
numerically and obtain a full profile of the turbulent flow field. However, this is not
possible as it requires a huge amount of computational effort. Hence we require a
turbulence model.

An important feature in turbulence modeling is averaging, which simplifies the
solution of the governing equations of turbulence. As calculating resources are
limited, it is usually not possible to model the phenomena with desired grid and time
resolution, so to represent scales of the flow that are not resolved by the grid models
need to be applied.

There are different types of turbulence models:

• RANS-based models:
 Linear eddy-viscosity models

 Algebraic models
 One and two equation models

 Non-linear eddy viscosity models and algebraic stress models
 Reynolds stress transport models

• Large eddy simulations

• Detached eddy simulations and other hybrid models

In this tutorial, RANS-based model is explained in detail. In the next tutorial, large
eddy simulations (LES) and Smagorinsky-Lilly model will be covered.

2. RANS-based models

The governing equations for a Newtonian fluid are:

o Conservation of mass
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜕𝜕𝒖𝒖�) = 0

o Conservation of momentum (Navier-Stokes equation)
𝜕𝜕(𝜕𝜕𝑢𝑢�𝑖𝑖)
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜕𝜕𝑢𝑢�𝑖𝑖𝒖𝒖�) = −
𝜕𝜕𝑝𝑝�
𝜕𝜕𝑥𝑥𝑖𝑖

+ ∇ ∙ (𝜇𝜇∇𝑢𝑢�𝑖𝑖) + �̃�𝑆𝑀𝑀𝑖𝑖

o Conservation of passive scalars (given a scalar �̃�𝑒)
𝜕𝜕(𝜕𝜕�̃�𝑒)
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜕𝜕�̃�𝑒𝒖𝒖�) = ∇ ∙ �𝑘𝑘∇𝑇𝑇�� + �̃�𝑆𝑒𝑒

OpenFOAM® Basic Training

Tutorial Six

Note: suffix notation is used in the conservation of momentum equation for
simplicity, with 𝑖𝑖 = 1 corresponding to the x-direction, 𝑖𝑖 = 2 the y-direction and
𝑖𝑖 = 3 the z-direction.

One of the solutions to the problem is to reduce the number of scales (from infinity to
1 or 2) by using the Reynolds decomposition. Any property (whether a vector or a
scalar) can be written as the sum of an average and a fluctuation, i.e. 𝜑𝜑� = Φ + φ where
the capital letter denotes the average and the lower case letter denotes the fluctuation
of the property. Using the Reynolds decomposition in the Navier-Stokes equations we
obtain RANS or Reynolds Averaged Navier Stokes Equations.

o Average conservation of mass
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜕𝜕𝐔𝐔) = 0

o Average conservation of momentum
𝜕𝜕(𝜕𝜕U𝑖𝑖)
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜕𝜕U𝑖𝑖𝐔𝐔) = −
𝜕𝜕𝑃𝑃
𝜕𝜕𝑥𝑥𝑖𝑖

+ ∇ ∙ (𝜇𝜇U𝑖𝑖) −

 −�
𝜕𝜕(𝜕𝜕𝑢𝑢𝑢𝑢𝚤𝚤�����)
𝜕𝜕𝑥𝑥

+
𝜕𝜕(𝜕𝜕𝑣𝑣𝑢𝑢𝚤𝚤�����)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝜕𝜕𝑤𝑤𝑢𝑢𝚤𝚤�����)

𝜕𝜕𝜕𝜕
� + S𝑀𝑀𝑖𝑖

o Average conservation of passive scalars (given a scalar �̃�𝑒)
𝜕𝜕(𝜕𝜕E)
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜕𝜕EU) = ∇ ∙ (𝑘𝑘∇T)

 −�
𝜕𝜕(𝜕𝜕𝑢𝑢𝑒𝑒���)
𝜕𝜕𝑥𝑥

+
𝜕𝜕(𝜕𝜕𝑣𝑣𝑒𝑒���)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝜕𝜕𝑤𝑤𝑒𝑒����)
𝜕𝜕𝜕𝜕

� + S𝑒𝑒

Note: a special property of the Reynolds decomposition is that the average of the
fluctuating component is identically zero, a fact that is used in the derivation of the
above equations.

However, by using the Reynolds decomposition, there are new unknowns that were
introduced such as the turbulent stresses (𝜕𝜕𝑢𝑢𝑢𝑢���� , 𝜕𝜕𝑣𝑣𝑢𝑢���� , 𝜕𝜕𝑤𝑤𝑢𝑢���� , 𝜕𝜕𝑢𝑢𝑣𝑣���� , 𝜕𝜕𝑣𝑣𝑣𝑣��� , 𝜕𝜕𝑤𝑤𝑣𝑣���� , 𝜕𝜕𝑢𝑢𝑤𝑤���� ,
𝜕𝜕𝑣𝑣𝑤𝑤����, 𝜕𝜕𝑤𝑤𝑤𝑤�����) and turbulent fluxes (𝜕𝜕𝑢𝑢𝑒𝑒���, 𝜕𝜕𝑣𝑣𝑒𝑒���, 𝜕𝜕𝑤𝑤𝑒𝑒����) and therefore, the RANS equations
describe an open set of equations (where the over bar denotes an average). The need
for additional equations to model the new unknowns is called Turbulence Modeling.

We now have 9 additional unknowns (6 Reynolds stresses and 3 turbulent fluxes). In
total, for the simplest turbulent flow (including the transport of a scalar passive scalar,
e.g. temperature when heat transfer is involved) there are 14 unknowns (include u, v,
w, p, T)!

One possible approach to model the additional unknowns is to use the PDEs for the
turbulent stresses and fluxes as a guide to modeling. The turbulent models are as
follows, in order of increasing complexity:

• Algebraic (zero equation) models: mixing length (first order model)

OpenFOAM® Basic Training

Tutorial Six

• One equation models: k‐model, μt‐model (first order model)

• Two equation models: k‐ε, k‐kl, k‐ω, low Re k‐ε (first order model)

• Algebraic stress models: ASM (second order model)

• Reynolds stress models: RSM (second order model)

• Zero‐Equation Models

In OpenFOAM®, there are two simulation types for turbulence flow, RAS and LES.
As the name suggest, the RAS simulation is based on the RANS-based models
covered above and will be the sole focus of this tutorial. In the next tutorial, we will
move on to LES modeling and compare the results generated from these two
modeling types.

OpenFOAM® Basic Training

Tutorial Six

simpleFoam – pitzDaily

Simulation

Use simpleFoam solver, run a steady state simulation with following turbulence
models:

• kEpsilon (RAS)

• kOmega (RAS)

• LRR (RAS)

Objectives

• Understanding turbulence modeling

• Understanding steady state simulation

Data processing

Show the results of U and the turbulent viscosity in two separate contour plots.

OpenFOAM® Basic Training

Tutorial Six

1. Pre-processing

1.1. Copy tutorial
$FOAM_TUTORIALS/incompressible/simpleFoam/pitzDaily

1.2. 0 directory
When a turbulent model is chosen, the value of its constants and its boundary values
should be set in the appropriate files. For example in kEpsilon model the k and
epsilon files should be edited. See below for the epsilon file (in the 0 folder):

// *
* * * * * *//

dimensions [0 2 -3 0 0 0 0];

internalField uniform 14.855;

boundaryField
{
 inlet
 {
 type fixedValue;
 value uniform 14.855;
 }
 outlet
 {
 type zeroGradient;
 }
 upperWall
 {
 type epsilonWallFunction;
 value uniform 14.855;
 }
 lowerWall
 {
 type epsilonWallFunction;
 value uniform 14.855;
 }
 frontAndBack
 {
 type empty;
 }
}
// *
* * * * * *//

Note: Here is a list of files which should be available at 0 directory and need to be
modified for each turbulence model:

• laminar: no file

• kEpsilon (RAS): k and epsilon

• kOmega (RAS): k and omega

• LRR (RAS): k, epsilon and R

• Smagorinsky (LES): nuSgs

• kEqn (LES): k and nuSgs – This model is called ‘oneEqEddy’ in V2.3.0

OpenFOAM® Basic Training

Tutorial Six

• SpalartAllmaras (LES): nuSgs and nuTilda

Some files are available, e.g. epsilon, k and nuTilda, some files should be created by
the user, e.g. R, nuSgs. Templates for these files can be also found in the examples of
older versions of OpenFOAM®, e.g. 1.7.1.

Note: A missing R file can be created by OpenFOAM®. Open the
turbulenceProperties file in the constant directory, set the simulationType to RAS,
and RASModel to kEpsilon. Run the command ‘simpleFoam –postProcess –func R’
from terminal, it will create the R file in the 0 directory.

OpenFOAM® v1906: it will create the turbulenceProperties:R file in the 0 directory.
Then simply rename the file to R.

1.3. constant directory

In the turbulenceProperties file, the simulationType can be set as either RAS, LES
or laminar. Then the corresponding sub-dictionary of the chosen simulation type
needs to be defined. In this case, the sub-dictionary for RAS contains information
about the chosen RAS model (kEpsilon), and the status of turbulence and
printCoeffs are turned to on.

// *
* * * * * *//

simulationType RAS;

RAS
{
 // Tested with kEpsilon, realizableKE, kOmega, kOmegaSST, v2F,
 // ShihQuadraticKE, LienCubicKE.
 RASModel kEpsilon;

 turbulence on;

 printCoeffs on;
}

// *
* * * * * *//

Note: For the laminar model, set turbulence and printCoeffs to off.

1.4. system directory

Note: Since it is a steady state simulation, endTime in controlDict shows the number
of iterations instead of time and deltaT should be 1, because it is the amount of
increase in the iteration number.

For the LRR model, discretization model for the new variable R needs to be specified.
It is done through the fvSchemes file,

// *
* * * * * *//

ddtSchemes

OpenFOAM® Basic Training

Tutorial Six

{
 default steadyState;
}

gradSchemes
{
 default Gauss linear;
}

divSchemes
{
 default none;
 div(phi,U) bounded Gauss linearUpwind grad(U);
 div(phi,k) bounded Gauss limitedLinear 1;
 div(phi,epsilon) bounded Gauss limitedLinear 1;
 div(phi,omega) bounded Gauss limitedLinear 1;
 div(phi,v2) bounded Gauss limitedLinear 1;
 div(phi,R) bounded Gauss limitedLinear 1;
 div(R) Gauss linear;
 div((nuEff*dev2(T(grad(U))))) Gauss linear;
 div(nonlinearStress) Gauss linear;
}

laplacianSchemes
{
 default Gauss linear corrected;
}

interpolationSchemes
{
 default linear;
}

snGradSchemes
{
 default corrected;
}

wallDist
{
 Method meshWave;
}
// *
* * * * * *//

Furthermore, fvSolution needs to be changed due to the new R parameter. The solver
type for R is defined, in this case the solver used will be the same as the one for other
variables (U, k, epsilon, omega).

2. Running simulation

>blockMesh
>simpleFoam

Note: When the solution converges, “SIMPLE solution converged in …
iterations” message will be displayed in the Shell window. If nothing happens and
you do not see a message after a while (this is not the case in here, it converges after
a short time), then you should check the residuals which are displayed in the Shell
window manually (you should check initial residual values, it shows the
difference between this iteration and the last one), if all of the Initial residual
(see below) values are close to amounts you have set in the fvSolution then you can
stop simulation (ctrl+c).

OpenFOAM® Basic Training

Tutorial Six

Time = 298

smoothSolver: Solving for Ux, Initial residual = 0.00013831, Final residual =
9.28001e-06, No Iterations 6
smoothSolver: Solving for Uy, Initial residual = 0.000977894, Final residual =
6.73868e-05, No Iterations 6
GAMG: Solving for p, Initial residual = 0.00192871, Final residual =
0.000174838, No Iterations 7
time step continuity errors : sum local = 0.000840075, global = 6.13868e-05,
cumulative = -0.193739
smoothSolver: Solving for epsilon, Initial residual = 0.000175322, Final
residual = 1.138e-05, No Iterations 2
smoothSolver: Solving for k, Initial residual = 0.000404928, Final residual =
2.99083e-05, No Iterations 2
ExecutionTime = 56.7 s ClockTime = 57 s

SIMPLE solution converged in 298 iterations

3. Post-processing

The simulation results are as follows (all simulations scaled to the same range):

RAS
model Velocity magnitude Turbulent viscosity

kEpsilon

kOmega

LRR

Velocity magnitude and turbulent viscosity for different RAS models

Tutorial Seven

Turbulence - Transient

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Seven

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Clemens Gößnitzer
• Jozsef Nagy
• Vikram Natarajan
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the
work).

- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used,

such as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Seven

Background

1. Large eddy simulation (LES)

In LES models, it is assumed that large eddies of the flow are dependent on the
geometry, while the smaller eddies are more universal. One can then explicitly solve
for the large eddies in a calculation by resolving them in a grid and implicitly account
for the small eddies by using a sub grid-scale model (SGS model).
Mathematically, it is like separating the velocity field into a resolved and sub-grid part
using a filter function. The resolved part of the field represents the large eddies, while
the sub grid part of the velocity represents the small eddies whose effect on the
resolved field is included through the sub grid-scale model. Formally, one may think
of filtering as the convolution of a function with a filtering kernel 𝐺𝐺:

𝑢𝑢�𝑖𝑖(�⃗�𝑥) = �𝐺𝐺��⃗�𝑥 − 𝜉𝜉�𝑢𝑢�𝜉𝜉�𝑑𝑑𝜉𝜉

resulting in

𝑢𝑢𝑖𝑖 = 𝑢𝑢�𝑖𝑖 + 𝑢𝑢,
𝑖𝑖

Where 𝑢𝑢�𝑖𝑖 is the resolvable scale part and 𝑢𝑢,
𝑖𝑖 is the subgrid-scale part. However, most

practical (and commercial) implementations of LES use the grid itself as the filter and
perform no explicit filtering. The filtered equations are developed from the
incompressible Navier-Stokes equations of motion:

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑗𝑗
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= −
1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜐𝜐
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

�

Substituting in the decomposition 𝑢𝑢𝑖𝑖 = 𝑢𝑢�𝑖𝑖 + 𝑢𝑢,
𝑖𝑖 and p = p� + p, and then filtering the

resulting equation gives the equations of motion for the resolved field:

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝑢𝑢�𝑗𝑗
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= −
1
𝜌𝜌
𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜐𝜐
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

� +
1
𝜌𝜌
𝜕𝜕𝜏𝜏𝑖𝑖𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

We have assumed that the filtering operation and the differentiation operation
commute, which is not generally the case. It is thought that the errors associated with
this assumption are usually small, though filters that commute with differentiation
have been developed. The extra term 𝜕𝜕𝜏𝜏𝑖𝑖𝑗𝑗/𝜕𝜕𝑥𝑥𝑗𝑗 arises from the non-linear advection
terms, due to the fact that:

𝑢𝑢𝑗𝑗
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

≠ 𝑢𝑢�𝑗𝑗
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

and hence

𝜏𝜏𝑖𝑖𝑗𝑗 = 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗 − 𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥�����

OpenFOAM® Basic Training

Tutorial Seven

Similar equations can be derived for the sub grid-scale field. Sub grid-scale
turbulence models usually employ the Boussinesq hypothesis, and seek to calculate
(the deviatoric part of) the SGS stress using:

𝜏𝜏𝑖𝑖𝑗𝑗 −
1
3
τ𝑘𝑘𝑘𝑘δ𝑖𝑖𝑗𝑗 = −2µ𝑡𝑡𝑆𝑆�̅�𝑖𝑗𝑗

where 𝑆𝑆�̅�𝑖𝑗𝑗 is the rate-of-strain tensor for the resolved scale defined by

𝑆𝑆�̅�𝑖𝑗𝑗 =
1
2
�
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

�

and 𝜐𝜐𝑡𝑡 is the subgrid-scale turbulent viscosity. Substituting into the filtered Navier-
Stokes equations, we then have:

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝑢𝑢�𝑗𝑗
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= −
1
𝜌𝜌
𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�[𝜐𝜐 + 𝜐𝜐𝑡𝑡]
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

�

where we have used the incompressibility constraint to simplify the equation and the
pressure is now modified to include the trace term 𝜏𝜏𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑗𝑗/3.

2. Smagorinsky-Lilly model
A simple model for Sub grid-scale model is the Smagorinsky model, which can be
summarized as:

𝜏𝜏𝑖𝑖𝑗𝑗 −
1
3
τ𝑘𝑘𝑘𝑘δ𝑖𝑖𝑗𝑗 = −2(C𝑠𝑠∆)2|𝑆𝑆̅|S𝑖𝑖𝑗𝑗

In the Smagorinsky-Lilly model, the eddy viscosity is modeled by

𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 = ρ(C𝑠𝑠∆)2|𝑆𝑆̅|

Where the filter width is usually taken to be

∆= (𝑉𝑉𝑉𝑉𝑉𝑉𝑢𝑢𝑉𝑉𝑉𝑉)1/3

and

𝑆𝑆̅ = �2𝑆𝑆𝑖𝑖𝑗𝑗𝑆𝑆𝑖𝑖𝑗𝑗

The effective viscosity is calculated from

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠

The Smagorinsky constant usually has the value: 𝐶𝐶𝑠𝑠 = 0.1 − 0.2

OpenFOAM® Basic Training

Tutorial Seven

pisoFoam – pitzDaily

Simulation

Use the pisoFoam solver, run a backward facing step case for 0.2 s with different
turbulence models:

• Smagorinsky (LES)

• kEqn (LES)

• kEpsilon (RAS)

Objectives

• Understanding turbulence models

• Understanding the difference between transient and steady state simulation

• Finding appropriate turbulence model

Data processing

Display the results of U and the turbulent viscosity in two separate contour plots at
three different time steps. Compare with steady state simulation (Tutorial Six).

OpenFOAM® Basic Training

Tutorial Seven

1. Pre-processing
1.1. Copy tutorial
Copy the tutorial from the following directory to your working directory:

$FOAM_TUTORIALS/incompressible/pisoFoam/LES/pitzDaily

1.2. 0 directory
Set the turbulence model initial and boundary values.

Note: For different turbulent models, different files should be modified (check
Tutorial Six).

1.3. constant directory
As mentioned in Tutorial Six, in turbulenceProperties the turbulent model type has to
be set. The simulationType can be changed to LES or RAS. Depending on which
type is selected, the corresponding sub-dictionary needs to be specified. Below is the
turbulenceProperties file for the kEqn model which is an LES model.

// *
* * * * * *//
simulationType LES;

LES
{

LESModel kEqn;
turbulence on;
printCoeffs on;
delta cubeRootVol;

dynamicKEqnCoeffs
{
 filter simple;
}

cubeRootVolCoeffs
{
 deltaCoeff 1;
}

PrandtlCoeffs
{
 delta cubeRootVol;
 cubeRootVolCoeffs
 {
 deltaCoeff 1;
 }

 smoothCoeffs
 {
 delta cubeRootVol;
 cubeRootVolCoeffs
 {
 deltaCoeff 1;
 }

 maxDeltaRatio 1.1;
 }

 Cdelta 0.158;
}

vanDriestCoeffs

OpenFOAM® Basic Training

Tutorial Seven

{
 delta cubeRootVol;
 cubeRootVolCoeffs
 {
 deltaCoeff 1;
 }

 smoothCoeffs
 {
 delta cubeRootVol;
 cubeRootVolCoeffs
 {
 deltaCoeff 1;
 }

 maxDeltaRatio 1.1;
 }

 Aplus 26;
 Cdelta 0.158;
}

smoothCoeffs
{
 delta cubeRootVol;
 cubeRootVolCoeffs
 {
 deltaCoeff 1;
 }

 maxDeltaRatio 1.1;
}

}
// *
* * * * * *//

2. Running simulation
>blockMesh
>pisoFoam

3. Post-processing
The simulation results are as follows:
For the kEpsilon model after 0.2 s the results are similar to the steady state simulation.
Therefore, it can be assumed it has reached the steady state. Other models do not have
a steady situation and are fluctuating all the time, so they require averaging for
obtaining steady state results.
kEpsilon and other RAS models use averaging to obtain the turbulence values, but
LES does not include any averaging by default. Therefore, LES simulations should
use a higher grid resolution (smaller cells) and smaller time steps (for reasonable Co
number). Contour plots or other LES results should be presented time averaged over
reasonable number of time steps (not done in this tutorial).

OpenFOAM® Basic Training

Tutorial Seven

Velocity magnitude Turbulent viscosity

Smagorinsky

0.01 s

0.05 s

0.2 s

kEqn

0.01 s

0.05 s

0.2 s

kEpsilon

0.01 s

0.05 s

0.2 s

Comparison of different turbulent models for transient simulation.

Tutorial Eight

Multiphase

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Eight

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Clemens Gößnitzer
• Jozsef Nagy
• Vikram Natarajan
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such

as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license terms

of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Eight

Background

In this tutorial we are going to solve a problem of dam break using the interFoam solver. The main
feature of this problem is flow of water and air separated by a sharp interface. Before starting, let’s
cover some of the basics of multiphase flow.

1. Multiphase flow

Multiphase flow is simultaneous flow of materials in different phases. There can be multiple
components present in each phase. The common types of multiphase flows are: gas-liquid, gas-
solid, liquid-solid, liquid-liquid and three-phase flows.

Multiphase flow can be further categorized based on the visual appearance of the flow into
separated, mixed or dispersed flow. In dispersed flow, one phase exist as a continuous fluid, while
all other phases act as discontinuous particles flowing through the continuous fluid. In mixed flow
regions, dispersed particles as well as semi-continuous interfaces exist together.

So why is multiphase flow important? Multiphase flow is present in many industrial processes, such
as bubble columns, absorption, adsorption and stripping columns. Modeling of multiphase flow can
help maximizing contact between different phases, hence increasing the efficiency of the process.

2. Modeling approaches

Modeling of multiphase flow can be extremely complex, due to possible flow regime transitions. To
simplify the matter, different modeling approaches can be adopted and they generally fall into two
categories: lagrangian and Eulerian. In the case of dispersed configuration, Lagrangian approach is
more suitable. This involves tracking individual point particles during its movement. The other
approach is the Eulerian approach, which observes fluid behavior in a given control volume.

Below we will cover some common modeling approaches of multiphase flow.

2.1. Euler-Euler approach (Multi-fluid model)

All phases are treated as continuous in the Euler-Euler approach. This approach is suitable for
separated flows where each phase behaves as a continuum, rather than being discrete. The phases
interact through the drag and lift forces acting between them, as well as through heat and mass
transfer. The Euler-Euler approach is also capable of modeling dispersed flow, where we are
interested in the overall motion of particles rather than tracking individual particles.

In the Euler-Euler approach, we introduce the concept of phasic volume fractions. These fractions
are assumed to be continuous functions of space and time, with their sum equal to one. For each
phase, a set of conservation equations for mass, momentum and energy is solved individually; in
addition, a transport equation for the volume fraction is solved. Coupling between the phases is
achieved through a shared pressure and interphase exchange coefficients.

2.2. Eddy Interaction Model

In the Eddy Interaction Model, each particle interacts with a succession of eddies. The fluid motion
of the particle is characterized by three parameters: i) eddy velocity, ii) eddy lifetime, iii) eddy
length. It follows the particle-tracking Lagrangian approach.

OpenFOAM® Basic Training

Tutorial Eight

The eddy lifetime (𝑡𝑡𝑒𝑒) and eddy length scale (𝑙𝑙𝑒𝑒) are estimated from the local turbulence properties.
From the length scale and the particle velocity, one can calculate the eddy transit time (𝑡𝑡𝑐𝑐), i.e. the
time taken for a particle to cross the eddy. The particle is then assumed to interact with the eddy for
a time which is the minimum of the eddy life time and the eddy transit time.

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = min (𝑡𝑡𝑒𝑒, 𝑡𝑡𝑐𝑐)

During that interaction the fluid fluctuating velocity is kept constant and the discrete particle is
moved with respect to its equation of motion. Then a new fluctuating fluid velocity is sampled and
the process is repeated.

2.3. Volume of Fluid (VOF) method

VOF method belongs to the Eulerian class of modeling approach. It is based on the idea of fraction
function C. Fraction function indicates whether a chosen phase is present inside the control
volume. If C=1, the control volume is completely filled with the chosen phase; if C=0, the control
volume is filled with a different phase. A value between 0 and 1 indicates that the interface between
phases is present inside the control volume. It is important in VOF method that the flow domain is
modeled on a fine grid, i.e. the interface should be resolved.

The focus of the VOF method is to track the interface between phases. To do this, the transport
equations are solved for mixture properties, assuming that all field variables are shared between the
phases. Then an advection equation for the fraction function C is solved. The discretization of the
fraction function equation is crucial for obtaining a sharp interface.

The multiphase flow in this tutorial is analysed using the interFoam solver. Here is a brief
explanation of the solver below.

3. interFoam solver

interFoam is suitable for solving multiphase flow between 2 incompressible, isothermal immiscible
fluids. It is based on the Volume of Fluid (VOF) approach.

OpenFOAM® Basic Training

Tutorial Eight

interFoam – damBreak

Simulation

Use the interFoam solver to simulate breaking of a dam for 2s.

Objectives

• Understanding how to set viscosity, surface tension and density for two phases

Data processing

See the results in ParaView.

OpenFOAM® Basic Training

Tutorial Eight

1. Pre-processing
1.1. Copy tutorial
Copy tutorial from the following folder to your working directory:

$FOAM_TUTORIALS/multiphase/interFoam/laminar/damBreak/damBreak

1.2. 0 directory
In the 0 directory the following files exist:

alpha.water.orig p_rgh U

OpenFOAM® v1906: alpha.water also exist!

In the alpha.water.orig and p_rgh files the initial values and also boundary conditions for water
phase and also pressure are set. Copy alpha.water.orig to alpha.water (remember: the *.orig files are
back up files, and solvers do not use them). E.g. in alpha.water:

// *//

dimensions [0 0 0 0 0 0 0];

internalField uniform 0;

boundaryField
{
 leftWall
 {
 type zeroGradient;
 }

 rightWall
 {
 type zeroGradient;
 }

 lowerWall
 {
 type zeroGradient;
 }

 atmosphere
 {
 type inletOutlet;
 inletValue uniform 0;
 value uniform 0;
 }

 defaultFaces
 {
 type empty;
 }
}
// *//

Note: The inletOutlet and the outletInlet boundary conditions are used when the flow
direction is not known. In fact, these are derived types and are a combination of two different
boundary types.

OpenFOAM® Basic Training

Tutorial Eight

- inletOutlet: When the flux direction is toward the outside of the domain, it works like a
zeroGradient boundary condition and when the flux is toward inside the domain it is like a
fixedValue boundary condition.

- outletInlet: This is the other way around, if the flux direction is toward outside the
domain, it works like a fixedValue boundary condition and when the flux is toward inside
the domain, it is like a zeroGradient boundary condition.

E.g. if the velocity field outlet is set as inletOutlet and the inletValue is set to (0 0 0), it
avoids backflow at the outlet! The “inletValue” or “outletValue” are values for
fixedValue type of these boundary conditions and “value” is a dummy entery for OpenFOAM®
for finding the variable type. Using (0 0 0), OpenFOAM® understands that the variable is a
vector.

1.3. constant directory
In the transportProperties file the properties of two phases can be set under each phase sub-
dictionary, e.g. water or air:

// *//

phases (water air);

water
{
 transportModel Newtonian;
 nu 1e-06;
 rho 1000;
}

air
{
 transportModel Newtonian;
 nu 1.48e-05;
 rho 1;
}

sigma 0.07;

// *//

In both phases the coefficients for different models of viscosity are given, e.g. nu and rho.
Depending on which model is selected, the coefficients from the corresponding sub-dictionary are
read. The selected model is Newtonian, only the nu coefficient is used.

sigma is the surface tension between two phases, in this example it is the surface tension between
air and water.

Checking the g file, the gravitational field and also its direction are defined, it is 9.81 m/s2 in the
negative y direction.

// *//

dimensions [0 1 -2 0 0 0 0];
value (0 -9.81 0);

// *//

OpenFOAM® Basic Training

Tutorial Eight

2. Running simulation
>blockMesh
>setFields
>interFoam

3. Post-processing
The simulation results are as follows (these are not the results for the original mesh, but a 2x refined
mesh):

0.0 s

0.05 s

0.1 s

0.30 s

0.35 s

0.4 s

0.70 s

1.0 s

2.0 s

Contours of the water volume fraction at different time steps

Tutorial Nine

Parallel Processing

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Nine

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Clemens Gößnitzer
• Jozsef Nagy
• Vikram Natarajan
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the
work).

- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used,

such as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Nine

Background

In this tutorial we will analyze compressible fluid flow in OpenFOAM®. Parallel
processing is utilized to speed up the simulation. In this introduction part, theory
behind compressible flow, solvers for compressible flow and parallel computing will
be explained in detail.

1. Introduction to compressible flow

So far we have only considered incompressible fluid flows, however in many
situations; there may be a significant change in the density. One example of
compressible flow is the flow through a diverging-converging nozzle. Compressibility
becomes dominant in flows when the Mach number is greater than about 0.3. The
Mach number is defined as follows:

𝑀𝑀𝑀𝑀 =
𝑢𝑢
𝑐𝑐

=
𝑙𝑙𝑙𝑙𝑐𝑐𝑀𝑀𝑙𝑙 𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣
𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑠𝑠 𝑙𝑙𝑜𝑜 𝑠𝑠𝑙𝑙𝑢𝑢𝑠𝑠𝑠𝑠

When a fluid flow is compressible, temperature and pressure are affected strongly by
variations in density. It is therefore important to take into account the linkage between
pressure, temperature and density in compressible flow, usually by applying an
equation of state from thermodynamics (e.g. the ideal gas equation).

2. Compressible flow solvers

There are two general types of solution schemes for compressible flow: pressure-
based and density-based.

2.1. Pressure-based solvers

This type of solver was historically derived from the solution approach used on
incompressible flows. They solve for the primitive variables. The discretized
momentum and energy equations are used to update velocities and energy. The
pressure is obtained by applying a pressure-correction algorithm on the continuity and
momentum equations. Density is then calculated from the equation of state.

2.2. Density-based solvers

Density-based solvers are suitable for solving the conserved variables. Similar to
pressure-based solvers, the conversed velocity and energy terms are updated from the
discretized momentum and energy equations. We can then solve for density from the
continuity equation, afterwards we use the equation of state to update the pressure.

In general, density based solvers are more suitable for high speed compressible flows
with shocks. This is because density based solvers solve for conserved quantities
across the shock, so the discontinuities will not affect the results.

3. Parallel computing

Imagine if we need to tackle a complex CFD problem that involves complex
geometry, multiphase flow, turbulence and reaction, how do we adopt a methodical
computational approach to save time and cost? This is when parallel computing

OpenFOAM® Basic Training

Tutorial Nine

comes in. Parallel computing is defined as the simultaneous use of more than one
processor to execute a program. The geometry of the domain will be partitioned into
sub-domains, with each sub-domain assigned to a single processor. Furthermore data
and computational tasks will be partitioned and divided amongst the processors. This
step is known as domain decomposition.

Parallel computing can be carried out in two ways. One is done on a single computer
with multiple internal processors, known as a Shared Memory Multiprocessor. The
other way is achieved through a series of computers interconnected by a network,
known as a Distributed Memory Multicomputer.

3.1. Shared versus distributed memory

 Shared Memory
Multiprocessor

Distributed Memory
Multicomputer

Memory
Data is saved in a global
memory that can be accessed
by all processors

Each computer has a local
memory and a processor can
only access its local memory

Data transfer
between
processors

The sender processor simply
needs to write the data in a
global variable and the receiver
can read it

Message is sent explicitly from
one computer to another using a
message passing library, e.g.
Message Passing Interface
(MPI)

In OpenFOAM® the application of parallel computing can be executed using the
decomposePar command. This allows the solver to be run on multiple processors. The
workflow of parallel computation in OpenFOAM® is summarized below:

• Division of the mesh into sub-domains
• Running of the solver in parallel
• Reconstruction of the meshes and connecting the results

OpenFOAM® Basic Training

Tutorial Nine

compressibleInterFoam – depthCharge3D

Simulation

Use the compressibleInterFoam solver, simulate the example case for 0.5 s.

Objectives

• Understanding the difference between incompressible and compressible
solvers

• Understanding parallel processing and different discretization methods

Data processing

Investigate the results in ParaView.

OpenFOAM® Basic Training

Tutorial Nine

1. Pre-processing
1.1. Copy tutorial
Copy the tutorial from following directory to your working directory:

$FOAM_TUTORIALS/multiphase/compressibleInterFoam/laminar/depth
Charge3D

1.2. 0 directory
In the 0 directory copy the alpha.water.orig, p.orig and p_rgh.orig files to
alpha.water, p and p_rgh respectively.

OpenFOAM® v1906: Create a copy of 0.orig folder and rename it to 0!

1.3. constant directory
Phases and common physical properties of the two phases are set in the
thermophysicalProperties file.

// *
* * * * * *//

phases (water air);

pMin 10000;

sigma 0.07;

// *
* * * * * *//

Individual phase properties are set in thermophysicalProperties.phase files, e.g.
thermophysicalProperties.air.

1.4. system directory
The decomposeParDict file includes the parallel settings, such as the number of
domains (partitions) and also how the domain is going to be divided into these
subdomains for parallel processing.

// *
* * * * * *//
numberOfSubdomains 4;

method hierarchical;

simpleCoeffs
{
 n (1 4 1);
 delta 0.001;
}

hierarchicalCoeffs
{
 n (1 4 1);
 delta 0.001;
 order xyz;
}

manualCoeffs
{

OpenFOAM® Basic Training

Tutorial Nine

 dataFile "";
}

distributed no;

roots ();
// *
* * * * * *//

OpenFOAM® v1906: In this file just the coefficients for hierarchical method are
listed!

numberOfSubdomains should be equal to the number of cores used. method
should show the method to be used. In the above example, the case is simulated with
the hierarchical method and 4 processors.

If the simple method is being used, the parameter n must be changed accordingly.
The three numbers (1 4 1) indicate the number of pieces the mesh is split into in
the x, y and z directions, respectively. Their multiplication result should be equal to
numberOfSubdomains.

If the hierarchical method is being used, these parameters and also the order in
which the mesh should be split up in each direction should be provided.

If the scotch method is being used, then no user-supplied parameters are necessary
except for the number of subdomains.

There is also a parameter delta, known as the cell skew factor. This factor is set to a
default value of 0.001, and measures to what extent skewed cells should be
accounted for.

Note: In order to check the quality of the mesh, the checkMesh tool can be used (run it
from main case directory). If the message “Mesh OK” is displayed – the mesh is fine
and no corrections need to be done.

If the mesh fails in one or more tests, try to recreate or refine the mesh for a better
mesh quality (less non-orthogonally and skewness). If the error exists after correcting
the mesh then a possible course of action is to increase the delta parameter (for
example: to 0.01) and then rerun the blockMesh and checkMesh tools.

If non-orthogonal cells exist in a mesh, another option is using non-orthogonal
corrections in the fvSolution file in the algorithm sub-dictionary (e.g. PIMPLE or
PISO). Usually using 1 or 2 as nNonOrthogonalCorrectors is enough.

2. Running simulation
>blockMesh
>setFields

For running the simulation in parallel mode the computing domain needs to be
divided into subdomains and a core should be assigned to each subdomain. This is
done by following command:

>decomposePar

OpenFOAM® Basic Training

Tutorial Nine

This decomposes the mesh according to the supplied instructions. One possible source
of error is the product of the parameters in n does not match up to the number of the
subdomains. This appears for the simple and hierarchical methods.

After executing this command four new directories will be made in the simulation
directory (processor0, processor1, processor2 processor3), and each subdomain
calculation will be saved in the respective processor directory.

Note: When the domain is divided to subdomains in parallel processing new
boundaries are defined. The data should be exchanged with the neighbor boundary,
which it is connected to in the main domain.

>mpirun -np <No of cores> solver --parallel > log

<No of cores> is the number of cores being used. solver is the solver for this
simulation. For example, if 4 cores are desired, and the solver is
compressibleInterFoam following command is used:

>mpirun -np 4 compressibleInterFoam -parallel > log

> log is the filename for saving the simulation status data, instead of printing them
to the screen. For checking the last information which is written to this file the
following command can be used during the simulation running:

>tail --f log

Note: Before running any simulation, it is important to run the top command (type the
‘top’ command in the terminal), to check the number of cores currently used on the
machine. Check the load average. This is on the first line and shows the average
number of cores being used. There are three numbers displayed, showing the load
averages across three different time scales (one, five and 15 minute respectively).

Add the number of cores you plan to use to this number – and you will get the
expected load average during your simulation. This number should be less than the
total number of cores in the machine – or the simulation will be slowed or the
machine will crash (if you run out of memory). If you are running on a multi user
server it is recommended to leave at least a few cores free, to allow for any
fluctuations in the machine load.

Note: top command execution can be interrupted by typing q (or ctrl+c)

The simulation can take several hours, depending on the size of the mesh and time
step size.

3. Post-processing
For exporting data for post processing, at first all the processors data should be put
together and a single combined directory for each time step was created. By executing
the following command all the cores data will be combined and new directories for
each time step will be created in the simulation main directory:

>reconstructPar

OpenFOAM® Basic Training

Tutorial Nine

Convert the data to ParaView format:

>foamToVTK

Note: To do the reconstruction or foamToVTK conversion from a start time until an
end time the following flags can be used:

>reconstructPar --time [start time name, e.g. 016]:[end time
name, e.g. 020]

>foamToVTK --time [start time name, e.g. 016]:[end time name,
e.g. 020]

Using above commands without entering end time will do the reconstruction or
conversion from start time to the end of available data:

>reconstructPar --time [start time name, e.g. 016]:

>foamToVTK --time [start time name, e.g. 016]:

For reconstructing or converting only one time step the commands should be used
without end time and “:”:

>reconstructPar --time [time name, e.g. 016]

>foamToVTK --time [time name, e.g. 016]

OpenFOAM® Basic Training

Tutorial Nine

The simulation results are as follows:

0 s

0.05 s

0.1 s

0.15 s

0.20 s

0.25 s

0.3 s

0.4 s

0.5 s

3D depth charge, alpha = 0.5 iso-surfaces, parallel simulation

OpenFOAM® Basic Training

Tutorial Nine

4. Manual method
4.1 Case set-up and running simulation

The manual method for decomposition is slightly different from the other three. In
order to use it:

After running the blockMesh and setFields utilities, set the decomposeParDict file as
any other simulation. For decomposition method, choose either simple, hierarchical or
scotch. Set the number of cores to the same number which is going to be used for
manual.

>decomposePar --cellDist

Once the decomposition is done, check the cellDecomposition file in the constant
directory. It should have a format similar to:

// *
* * * * * *//

1024000
(
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1 ...)
// *
* * * * * *//

Note: If the above output is not displayed, but a stream of NUL characters, your text
editor is probably printing binary. To fix this, open system/controlDict, and change
the writeFormat field from binary to asci and rerun the previous command.

The first number n after the header, but before the opening brackets, 1024000 in this
example, refers to the number of points in the mesh. Within the brackets, n lines
follow. Each line contains one number between 0 and n-1, where n is the number of
cores to be used for the computation. This number refers to the core being used to
compute the corresponding cell in the points file in the constant directory. For
example, if the second line in the points file brackets reads (0.125 0 0) and the

OpenFOAM® Basic Training

Tutorial Nine

second line in the cellDecomposition directoy reads 0, this means that the cell
(0.125 0 0) will be processed by processor 0.

This cellDecomposition file can now be edited. Although this can be done manually,
it is probably not feasible for any sufficiently large mesh. The process must thus be
automated by writing a script to populate the cellDecomposition file according to the
desired processor breakdown.

When the new file is ready, save it under a different name:

>cp cellDecomposition manFile

Now, edit the decomposeParDict file. Select decomposition method manual, and for
the dataFile field in the manual coeffs range, specify the path to the file which
contains the manual decomposition. Note that OpenFOAM® searches in the constant
directory by default, in case relative paths are being used:

// *
* * * * * *//

numberOfSubdomains 4;

method manual;

simpleCoeffs
{
 n (1 4 1);
 delta 0.001;
}

hierarchicalCoeffs
{
 n (1 4 1);
 delta 0.001;
 order xyz;
}

manualCoeffs
{
 dataFile "manFile";
}

distributed no;

roots ();

// *
* * * * * *//

Delete the old processor directories, decompose the case with the new decomposition
settings and run the simulation.

4.2. Visualizing the processor breakdown
It may be interesting to visualize how exactly OpenFOAM® breaks down the mesh.
This can be easily visualized using ParaView. After running the simulation, but before
running the reconstructPar command, repeat the following for each of the processor
directories:

>cd processor<n>

OpenFOAM® Basic Training

Tutorial Nine

where n is the processor number

>foamToVTK

convert the individual processor files to VTK, next, open ParaView:

>paraview &

For each of the processor directories, perform the following steps:

- Open the VTK files in the relevant processor directory

- Double click them to open them and click on “Apply”

- The part of the mesh decomposed by that core will appear, in grey.

- Change the color in the drop-down menus in the toolbar. This is to ensure that each
individual part can be easily seen.

Once this is done for all processors, the entire mesh will appear. However, the
processor regions can now easily be seen in a different color.

In order to save this, there are two options. The first option is to take a screenshot:

File > Save a screenshot

The second option is to save the settings and modifications as a ParaView state file.

File > Save State

The current settings and modifications can then be easily recovered by:

File > Load State

Saving the state allows changes to be made afterwards. Saving a screenshot keeps
only a picture, while losing the ability to make changes after exiting ParaView. Doing
both is recommended.

Tutorial Ten

Residence Time Distribution

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Ten

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Clemens Gößnitzer
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such

as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license terms

of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Ten

Background

In this tutorial we will carry out Residence Time Distribution (RTD) analysis of fluid flow through
a T-junction pipe.

1. Residence Time Distribution (RTD)

Residence time distribution is a probability distribution function that provides information about the
amount of time a tracer element spends within a process unit, such as a reactor or a column. RTD
analysis is important because in almost all real-life processes, the mixing is not ideal and chemical
engineers will need RTD to analyze the real mixing characteristics, for example inside a
continuously stirred reactor. They can also use RTD analysis to obtain information about the flow
pattern, back mixing and bypassing behavior of a process unit.

2. Tracer Analysis

Tracer analysis and RTD distribution of an ideal process

Radioactive tracers are usually used to determine RTD of a process unit. Based on the above
diagram, first the tracer is injected into the inlet, and then the exit tracer concentration, 𝐶𝐶(𝑡𝑡), is
measured at regular time intervals. This allows the exit age distribution, 𝐸𝐸(𝑡𝑡), to be calculated.

𝐸𝐸(𝑡𝑡) =
𝐶𝐶𝑇𝑇(𝑡𝑡)

∫ 𝐶𝐶𝑇𝑇(𝑡𝑡) 𝑑𝑑𝑡𝑡∞
0

=
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑡𝑡𝑇𝑇𝑇𝑇𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 𝑇𝑇𝑡𝑡 𝑡𝑡𝑐𝑐𝑡𝑡𝑇𝑇 𝑡𝑡
𝑇𝑇𝑐𝑐𝑡𝑡𝑇𝑇𝑇𝑇 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑡𝑡𝑇𝑇𝑇𝑇𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

It is clear from the above equation that the fraction of tracer molecules exiting the reactor that have
spent a time between 𝑡𝑡 and 𝑡𝑡 + 𝑑𝑑𝑡𝑡 in the process unit is 𝐸𝐸(𝑡𝑡)𝑑𝑑𝑡𝑡. Since all tracer elements will leave
the unit at some point, RTD satisfies the following relationship:

� 𝐸𝐸(𝑡𝑡) 𝑑𝑑𝑡𝑡 = 1
∞

0

OpenFOAM® Basic Training

Tutorial Ten

simpleFoam & scalarTransportFoam – TJunction

Simulation

Use the simpleFoam and scalarTransportFoam to simulate the flow through a square cross section T
pipe and calculate RTD (Residence Time Distribution) for both inlets using a step function
injection:

• Inlet and outlet cross sections: 1 × 1 m2

• Gas in the system: air at ambient conditions

• Operating pressure: 105 Pa

• Inlet 1: 0.1 m/s

• Inlet 2: 0.2 m/s

Objectives

• Understanding RTD calculation using OpenFOAM®
• Using multiple solvers for a simulation

Data processing

Plot the step response function and the RTD curve.

OpenFOAM® Basic Training

Tutorial Ten

1. Pre-processing

1.1. Copy tutorial
Copy the following tutorial to your working directory as a base case:

$FOAM_TUTORIALS/incompressible/simpleFoam/pitzDaily

1.2. 0 directory
Update p, U, nut, nuTilda, k and epsilon files with the new boundary conditions, e.g. U:

// *//

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{
 inlet_one
 {
 type fixedValue;
 value uniform (0.1 0 0)
 }
 inlet_two
 {
 type fixedValue;
 value uniform (-0.2 0 0)
 }
 outlet
 {
 type zeroGradient;
 }
 walls
 {
 type fixedValue;
 value uniform (0 0 0)

 }
}
// *//

1.3. constant directory

Check turbulenceProperties file for the turbulence model (kEpsilon).

// *//
simulationType RAS
RAS
{

RASModel kEpsilon;

turbulence on;

printCoeffs on;

}
// *//

1.4. system directory
Edit the blockMeshDict to create an appropriate geometry.

// *//
convertToMeters 1.0;

vertices
(

OpenFOAM® Basic Training

Tutorial Ten

 (0 4 0) // 0
 (0 3 0) // 1
 (3 3 0) // 2
 (3 0 0) // 3
 (4 0 0) // 4
 (4 3 0) // 5
 (7 3 0) // 6
 (7 4 0) // 7
 (4 4 0) // 8
 (3 4 0) // 9
 (0 4 1) // 10
 (0 3 1) // 11
 (3 3 1) // 12
 (3 0 1) // 13
 (4 0 1) // 14
 (4 3 1) // 15
 (7 3 1) // 16
 (7 4 1) // 17
 (4 4 1) // 18
 (3 4 1) // 19

);
blocks
(
 hex (0 1 2 9 10 11 12 19) (10 30 10) simpleGrading (1 1 1)
 hex (9 2 5 8 19 12 15 18) (10 10 10) simpleGrading (1 1 1)
 hex (8 5 6 7 18 15 16 17) (10 30 10) simpleGrading (1 1 1)
 hex (2 3 4 5 12 13 14 15) (30 10 10) simpleGrading (1 1 1)
);
edges
(
);
patches
(
 patch inlet_one
 (
 (0 10 11 1)
)
 patch inlet_two
 (
 (7 6 16 17)
)
 patch outlet
 (
 (4 3 13 14)
)
 wall walls
 (
 (0 1 2 9)
 (2 5 8 9)
 (5 6 7 8)
 (2 3 4 5)
 (10 19 12 11)
 (19 18 15 12)
 (18 17 16 15)
 (15 14 13 12)
 (0 9 19 10)
 (9 8 18 19)
 (8 7 17 18)
 (2 1 11 12)
 (3 2 12 13)
 (5 4 14 15)
 (6 5 15 16)
)
);

mergePatchPairs
(
);
// *//

OpenFOAM® Basic Training

Tutorial Ten

2. Running simulation

>blockMesh

Mesh created using blockMesh

>simpleFoam

Wait for simulation to converge. After convergence, check the results to make sure about physical
convergence of the solution.

>foamToVTK

The simulation results are as follows (results are on the cut plane in the middle):

Simulation results after convergence (~65 iterations)

3. RTD calculation

3.1. Copy tutorial
Copy following tutorial to your working directory:

$FOAM_TUTORIALS/basic/scalarTransportFoam/pitzDaily

3.2. 0 directory
Delete the U file and replace it with the calculated velocity field from the first part of the tutorial
(use the latest time step velocity field from previous part of simulation to calculate RTD for this
geometry). There is no need to modify or change it. The solver will use this field to calculate the
scalar transportation.

OpenFOAM® Basic Training

Tutorial Ten

Update T (T will be used as an inert scalar in this simulation) file boundary conditions to match new
simulation boundaries, to calculate RTD of the inlet_one set the internalField value to 0, T
value for inlet_one to 1.0 and T value for inlet_two to 0.

3.3. system directory
Replace the blockMeshDict file with the one from the first part of tutorial.

In the controlDict file change the endTime from 0.1 to 120 (approximately two times ideal
resistance time) and also deltaT from 0.0001 to 0.1 (Courant number approximately 0.4).

4. Running Simulation

>blockMesh
>scalarTransportFoam
>foamToVTK

5. Post-processing

Contour plots scalar T at 120 s for inlet 1

5.1. Calculating RTD
To calculate RTD the average T value at the outlets should be calculated first. The “integrate
variables function” of ParaView can be used for this purpose.

>foamToVTK

Load the outlet VTK file into paraview using following path:

File > Open > VTK > outlet > outlet_..vtk > OK > Apply

Select T from variables menu, and then integrate the variables on the outlet:

Filters > Data Analysis > Integrate Variables > Apply

The values given in the opened window are integrated values in this specific time step. By changing
the time step values for different time steps are displayed. As mentioned before, the average value
of the property is needed. Therefore, these values should be divided by outlet area to get average
values (1m × 1m).

After finishing the RTD calculations for inlet_one, the same procedure should be followed for
calculating RTD of inlet_two, except T value for inlet_one should be 0 and for inlet_two it
should be 1.0.

OpenFOAM® Basic Training

Tutorial Ten

Average value of T on the outlet for two inlets versus time

The average value of T for each outlet approaches a certain constant value, which is the ratio of that
scalar mass inlet to the whole mass inlet. For plotting data over time “Plot Selection Over Time”
option in ParaView can be used, in the opened SpreadSheetView window (IntegrateVariables)
select the set of data which you want to plot over time and then:

Filters > Data Analysis > Plot Selection Over Time > Apply

Next, to obtain the RTD plots, export the data to a spreadsheet program (e.g. Excel), calculate and
plot the gradient of changes in average value of T on the outlet from time 0 to 120s for both inlets.

RTD of two inlets

Tutorial Eleven

Reaction

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Eleven

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Clemens Gößnitzer
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such

as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license terms

of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Eleven

Background

There are two common approaches in modeling reactions:

1. Partially stirred reactor (PaSR) Model

Partially stirred rector (PaSR) model is used to model thermodynamic and chemical reactions
numerically, for example, combustion. In the PaSR approach, a computational cell is split into two
different zones: a reacting zone and a non-reacting zone. The reacting zone is modeled as a
perfectly stirred reactor (PSR), and all reactants are assumed to be perfectly mixed with each other.

For the reactor, we are interested in three concentrations, 1) mean concentration of key component
in the feed, 𝑐𝑐𝑖𝑖𝑖𝑖; 2) mixture concentration in the reacting zone, 𝑐𝑐; 3) concentration at the reactor
exit𝑐𝑐𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒.

In the reacting zone, reaction occurs for a duration of 𝜏𝜏𝑐𝑐, so the concentration of mixture changes
from 𝑐𝑐𝑖𝑖𝑖𝑖 to 𝑐𝑐. In the non-reacting zone, the reacted mixture is getting mixed up with the non-reacted
mixture for a duration of 𝜏𝜏𝑚𝑚𝑖𝑖𝑒𝑒, resulting in the final exit concentration, 𝑐𝑐𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒.

A key parameter to be calculated in this model would be the reaction rate, and it is clear that the
reaction rate is proportional to the ratio of the chemical reaction time to the total conversion time in
the reactor (i.e. sum of reacting and mixing time), 𝜅𝜅𝑘𝑘:

𝜅𝜅𝑘𝑘 =
𝜏𝜏𝑐𝑐

𝜏𝜏𝑐𝑐 + 𝜏𝜏𝑚𝑚𝑖𝑖𝑒𝑒

2. Eddy dissipation concept (EDC) Model

The Eddy Dissipation Concept (EDC) model looks at the interaction between reaction and
turbulence, where the overall reaction rate is controlled by turbulent mixing. It is widely used for
combustion modeling for a great variety of combustion environments with great success.

It is assumed in the model that most reaction takes place within fine turbulence structures, which
are modeled as perfectly-mixed reactors. We need to know the reaction mass fraction and the mass
transfer rate between the fine structures and its surrounding fluid.

The mass fraction occupied by the fine structures, 𝛾𝛾∗, is expressed as:

𝛾𝛾∗ = �
𝑢𝑢∗

𝑢𝑢′
�
2

Where 𝑢𝑢∗ is the mass average fine structure velocity. The fine structures are located in regions with
nearly constant turbulent kinetic energy given by 𝑢𝑢′2.

The mass transfer rate between fine structure and surrounding fluid per unit of fluid and per unit of
time is modeled as:

�̇�𝑚 = 2 ⋅
𝑢𝑢∗

𝐿𝐿∗
⋅ 𝛾𝛾∗

where 𝐿𝐿∗ is the characteristic length of the fine structure.

OpenFOAM® Basic Training

Tutorial Eleven

reactingFoam – reactingElbow

Simulation

Use the reactingFoam solver, simulate combustion of CH4 and O2 in a mixing elbow:

• Use the two times finer Hex mesh from Example One

• Domain initially filled with N2

• velocity-inlet-5:

- Velocity: 1 m/s

- Mass fractions: 23 % O2, 77 % N2

- Temperature: 800 K

• velocity-inlet-6:

- Velocity: 3 m/s

- Mass fractions: 50 % CH4, 50 % N2

- Temperature: 293 K

• Operating pressure: 105 Pa

• Operating temperature: 298 K

• Isolated walls

Objective

• Understanding multi-species and reaction modeling in OpenFOAM®

Data processing

Evaluate your results in ParaView.

OpenFOAM® Basic Training

Tutorial Eleven

1. Pre-processing

1.1. Copy tutorial
Copy the following tutorial to your working directory:

$FOAM_TUTORIALS/combustion/reactingFoam/laminar/counterFlowFlame2D

Copy the GAMBIT® mesh from Tutorial One (two times finer mesh) to the case main directory.

1.2. 0 directory
Update all the files in 0 directory with new boundary conditions, e.g. U:

// *//

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{
 wall-4
 {
 type fixedValue;
 value uniform (0 0 0);
 }

 velocity-inlet-5
 {
 type fixedValue;
 value uniform (1 0 0);
 }

 velocity-inlet-6
 {
 type fixedValue;
 value uniform (0 3 0);
 }

 pressure-outlet-7
 {
 type zeroGradient;
 }

 wall-8
 {
 type fixedValue;
 value uniform (0 0 0);
 }

 frontAndBackPlanes
 {
 type empty;
 }
}

// *//

The reaction taking place in this simulation CH4 combusting with O2 creating CO2 and H2O. N2 is
the non-reacting species. The boundary conditions and initial value of all species should be defined
in the 0 directory. These values are mass fractions (between 0 and 1) and dimension less, e.g. CH4:

// * //

dimensions [0 0 0 0 0 0 0];

OpenFOAM® Basic Training

Tutorial Eleven

internalField uniform 0.0;

boundaryField
{
 wall-4
 {
 type zeroGradient;
 }

 velocity-inlet-5
 {
 type fixedValue;
 value uniform 0; //no CH4 at this inlet
 }

 velocity-inlet-6
 {
 type fixedValue;
 value uniform 0.5; //50% CH4 mass fraction at this inlet
 }

 pressure-outlet-7
 {
 type zeroGradient;
 }

 wall-8
 {
 type zeroGradient;
 }

 frontAndBackPlanes
 {
 type empty;
 }
}

// *** //

Note: If the file for a species does not exist in the 0 directory, the values from Ydefault will be used
for that species.

1.3. constant directory
In the thermophysicalProperties file the physical properties of the species can be set:

// *//
thermoType
{
 type hePsiThermo;
 mixture reactingMixture;
 transport sutherland;
 thermo janaf;
 energy sensibleEnthalpy;
 equationOfState perfectGas;
 specie specie;
}

inertSpecie N2;

chemistryReader foamChemistryReader;

foamChemistryFile "$FOAM_CASE/constant/reactions";

foamChemistryThermoFile "$FOAM_CASE/constant/thermo.compressibleGas";
// *//

OpenFOAM® Basic Training

Tutorial Eleven

The mixture type is set to a reacting mixture for calculating the mixture properties and the heat
capacities are calculated using “janaf polynomials”.

N2 is defines as inertSpecie. In reaction solvers in OpenFOAM® the inert specie is calculated
explicitly using the mass balance equation (to satisfy mass conservation):

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 𝑚𝑚𝑠𝑠𝑖𝑖𝑐𝑐𝑓𝑓𝑖𝑖 = 1 − �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑓𝑓 𝑚𝑚𝑠𝑠𝑖𝑖𝑐𝑐𝑓𝑓𝑖𝑖𝑚𝑚

The species and the reactions are addressed using foamChemistryFile. In this simulation
reactions and species are read from reactions file in the constant directory:

species
(
 O2
 H2O
 CH4
 CO2
 N2
);

reactions
{
 methaneReaction
 {
 type irreversibleArrheniusReaction;
 reaction "CH4 + 2O2 = CO2 + 2H2O";
 A 5.2e16;
 beta 0;
 Ta 14906;
 }
}

OpenFOAM® v1906: Also the elements are listed in the reactions file and an element balance is
performed in the calculations!

The species in this simulation are O2, H2O, CH4, CO2 and N2. They are defined in the species
sub-dictionary. In the reactions sub-dictionary, reactions are specified. The reaction of methane
combustion is defined and it is of type irreversible Arrhenius reaction,
irreversibleArrheniusReaction.

In the Tutorial Two it was explained that the coefficients for calculating gas mixture properties are
defined in the mixture sub-dictionary because it was a homogeneous mixture. But in this example
the mixture is not homogenous so coefficients for calculating properties of each species are needed
separately to calculate mixture properties based on each cell composition. The coefficients of each
species are defined in the foamChemistryThermoFile, which reads the file thermos.compressibleGas
from the constant directory (this step is outlined in the thermophysicalProperties file). For example,
the O2 coefficients for each model are shown below:

// *//

O2
{
 specie
 {
 molWeight 31.9988;
 }
 thermodynamics
 {

OpenFOAM® Basic Training

Tutorial Eleven

 Tlow 200;
 Thigh 5000;
 Tcommon 1000;
 highCpCoeffs (3.69758 0.00061352 -1.25884e-07 1.77528e-11 -
 1.13644e-15 -1233.93 3.18917);
 lowCpCoeffs (3.21294 0.00112749 -5.75615e-07 1.31388e-09 –
 8.76855e-13 -1005.25 6.03474);
 }
 transport
 {
 As 1.67212e-06;
 Ts 170.672;
 }
}
…

// *//

OpenFOAM® v1906: Number of elements in the specie is listed in this file!

In the thermodynamics sub-dictionary the janaf polynomial model coefficients for calculating the
heat capacity can be found and in transport the sutherland model coefficients for viscosity are
stored.

1.4. system directory

By setting the adjustTimeStep to yes in the controlDict, the solver automatically ignores
deltaT, and calculates the deltaT based on the maximum Courant number maxCo defined for it.
Change the endTime to 120 (approximately one time the volumetric residence time based on
velocity-inlet-5) and writeInterval to 10, to write every 10 s to case directory.

// *//

application reactingFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 120;

deltaT 1e-6;

writeControl adjustableRunTime;

writeInterval 10;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep yes;

maxCo 0.4;

OpenFOAM® Basic Training

Tutorial Eleven

// *//

2. Running simulation

>fluentMeshToFoam fineHex.msh

After converting the mesh, check the boundary file in the constant/polyMesh directory and change
the type and inGroups of boundary frontAndBackPlanes from wall to empty (it is a 2D
simulation).

>reactingFoam
>foamToVTK

3. Post-processing

The simulation results at 120 s are as follows:

OpenFOAM® Basic Training

Tutorial Eleven

Simulation results after 120 s

Tutorial Twelve

snappyHexMesh – Single Region

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Twelve

Editorial board:

• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Philipp Schretter

Contributors:
• Philipp Schretter
• Bahram Haddadi
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such

as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license terms

of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Twelve

Background

In this tutorial, we will familiarize ourselves with the snappyHexMesh tool in OpenFOAM®. This
utility generates 3D meshes containing hexahedra and split-hexahedra. We will also introduce
different types of meshes with complex geometries and compare the snappyHexMesh tool with
other mesh generation tools.

1. Meshes with complex geometries

So far we have only worked with meshes in Cartesian co-ordinates, however, many engineering
problems involve complex geometries that do not fit exactly in Cartesian co-ordinates. In such
cases, it would be much more advantageous to work with grids that can handle curvature and
geometric complexity more naturally.

CFD methods for complex geometries are classified into two groups:

1) structured curvilinear grid arrangements

2) unstructured grid arrangements

In a structured grid arrangements:

• Cells center points are placed at the intersections of co-ordinates lines

• Cells have a fixed number of neighboring cells

• Cells center points can be mapped into a matrix based on their location in the grid

• Structure and position in the matrix is given by indices (I, J in two dimensions and I, J, K in
three dimensions)

For the most complex geometries it may be necessary to sub-divide the flow domain into several
different blocks, where each mesh cell is a block, this is known as block-structured grids. The
next level of complexity is the unstructured grids. It gives unlimited geometric flexibility, here the
limitations of structured grids do not apply – but at the cost of higher programming and
computational efforts. Unstructured grids also allow the most efficient use of computing resources
for complex flows, so this technique is now widely used in industrial CFD.

2. Mesh generation tools

There are a number of advanced meshing tools available, both commercial and free source. The
major mesh generators are ANSYS GAMBIT®, ICEM, Salome, snappyHexMesh and cfMesh. Here
we will learn about GAMBIT®, snappyHexMesh and cfMesh tools in detail.

2.1. GAMBIT®

GAMBIT® is a 3D unstructured tool, to specify the meshing scheme in it, two parameters must be
specified:

• Elements
• Type

OpenFOAM® Basic Training

Tutorial Twelve

The Elements parameter defines the shape(s) of the elements that are used to mesh the object. The
Type parameter defines the pattern of mesh elements on the object. It has a single graphical user
interface which brings geometry creation and meshing together in one environment.

2.2. snappyHexMesh

In contrast to GAMBIT®, which incorporates both mesh generation and refinement, the
snappyHexMesh tool built within OpenFOAM® requires an existing geometry base mesh to work
with. The base mesh usually comes from the blockMesh tool. This utility has the following key
features:

• allow parallel execution to speed up the process
• supports geometry data from STL/OBJ files
• addition of internal and wall layers
• zonal meshing

The key steps involved when running snappyHexMesh are:

• Castellation: The cells which are beyond a region set by a predefined point are deleted
• Snapping: Reconstructs the cells to move the edges from inside the region to the required

boundary
• Layering: Creates additional layers in the boundary region.

The advantages of snappyHexMesh over the other mesh generation tools are as follows:

• No commercial software package is ultimately necessary. For the meshing, the OpenFOAM®
environment is sufficient and no further software is necessary.

• The geometry can be created with any CAD program like CATIA®, FreeCAD, etc. As the
geometry is to be only surface data, the files need to be in .stl, .nas or .obj. format.

• The meshing process can be run in parallel mode. If high computational capabilities are
available, high quality meshes can be generated in little time.

2.3. cfMesh

cfMesh is an open-source library for mesh generation implemented within the OpenFOAM®
framework (similar to snappyHexMesh). Currently cfMesh is capable of producing mesh of
Cartesian type in both 2D and 3D, tetrahedral and polyhedral types.

The fundamental work-flow of the tool starts from a mesh template, then followed by a mesh
modifier. The modifier allows for efficient parallelization using shared memory parallelization
(SMP) and distributed memory parallelization using MPI.

OpenFOAM® Basic Training

Tutorial Twelve

snappyHexMesh – flange

Simulation

The procedure described in this tutorial is structured in the following order:
• Creation of the geometry data
• Meshing a geometry with one single region
• Run an OpenFOAM® simulation with the generated mesh using scalarTransportFoam

Objectives

• The aim of the tutorial is to give a basic introduction to single region meshing with the meshing
tool snappyHexMesh

• Understanding the advantages of snappyHexMesh

• Understanding the three basic steps of snappyHexMesh

Data processing

Import your simulation to ParaView and analyze the heat distribution in the flange.

OpenFOAM® Basic Training

Tutorial Twelve

1. Pre-processing
1.1. Copy tutorial
Copy the following tutorial to your working directory.

$FOAM_TUTORIALS/mesh/snappyHexMesh/flange

1.2. Set-up of stl files

Normally the .stl files are created using CAD software, such as CATIA® and freeCAD. stl files
contain information about the solid geometry. However, in this tutorial the stl files are available to
be copied from the OpenFOAM® tutorials folder. To do this, copy the stl files from the below
location to the constant/triSurface of your running case directory.
$FOAM_TUTORIALS/resources/geometry/flange.stl.gz

1.3. constant directory

The constant directory must initially have the following folder:

- triSurface:

The folder triSurface should contain a file with the geometry data to be meshed (stl, nas, obj).
The file name is to be used as a reference pointer in later stages.

Note: The stl file should be in ascii format. All the stl files (different boundaries stl files) should
form a closed geometry together.

1.4. system directory

For creating a mesh using snappyHexMesh the following files should be present in system
directory:
- blockMeshDict

For meshing using snappyHexMesh a background mesh is needed, which should surround the
geometry surface (e.g. stl file) file. The background mesh will be refined based on the settings in
the snappyHexMeshDict and the extra parts will be removed. Usually the background mesh is
crated using blockMesh. Here we define a base mesh.
Note: To ensure that the sharp edges are refined properly, it is very important to create perfect
cube cells in the background mesh using blockMesh utility.

- decomposeParDict

The meshing using snappyHexMesh can be also performed in parallel mode. If the mesh is to be
run in parallel using the decomposePar utility, this file defines the parameters for distributed
processors

- meshQualityDict

Parameters to be checked for mesh quality and their values are defined in this file.

OpenFOAM® Basic Training

Tutorial Twelve

- surfaceFeatureExtractDict:

Using surfaceFeatures utility prior to meshing with snappyHexMesh helps to extract the sharp
edges and have a better mesh with snappyHexMesh on these edges. All edges are marked,
whose adjacent surfaces normal are at an angle less than the angle specified in includedAngle
in the surfaceFeaturesDict. The extracted edges are written to “*.extendedFeatureEdgeMesh”
files in constant/extendedFeatureEdgeMesh folder to be treated later in the meshing process.

 // * * * * * * * ** //

Surfaces (“flange.stl”);

includedAngle 150;

 // * * * * * * * ** //

OpenFOAM® v1906: the utility surfaceFeatureExtract should be used for extracting sharp edges,
the setup file is surfaceFeatureExtractDict!

 // * * * * * * * ** //
flange.stl
{
 extractionMethod extractFromSurface;

 extractFromSurfaceCoeffs
 {
 includedAngle 150;
 }
 writeObj yes;
}

 // * * * * * * * ** //

OpenFOAM® v1906: surfaceFeatureExtract utility should be used!

- snappyHexMeshDict:

This file includes the settings for running the snappyHexMesh. As mentioned in the Background
section meshing using this tool has three steps:
1 – Castellating
2 – Snapping
3 – Layering
In the first section of this file, castellatedMesh, snap, addLayers can be set to true or
false depending on the stages required.

 // * * * * * * * ** //
 castellatedMesh true;
 snap true;
 addLayers true;
 // * * * * * * * ** //

The Geometry sub-dictionary lists all surfaces used by snappyHexMeshDict, except the
blockMesh geometry, and defines a name for each of them to be used as a reference.

OpenFOAM® Basic Training

Tutorial Twelve

Then we specify a region of the domain that we want to refine. The refined region is given an
arbitrary name; in this case, it is refineHole, which is a sphere with its center and radius
defined.

// * * * * * * * ** //
geometry
{
 flange
 {
 type triSurfaceMesh;
 file “flange.stl”;
 }
 refineHole

{
 type searchableSphere;
 centre (0 0 -0.012);
 radius 0.003;

 }
};

 // * * * * * * * ** //

OpenFOAM® v1906: The geometry section of the snappyHexMeshDict looks as following:

// * * * * * * * ** //
geometry
{
 flange.stl
 {
 type triSurfaceMesh;
 name flange;
 }
 …
};

 // * * * * * * * ** //

CASTELLATING

In the castellating step based on the settings in the snappyHexMeshDict file the created
background mesh (in this case using blockMesh) cells are cut into sub-cells and the unneeded
part of the mesh will be deleted. The background mesh is known as mesh “level 0”, by setting
the “level” to 1 the background mesh at the position of features or defined refinements will be
cut into half in each direction (creating 8 sub-cells for a 3D mesh). Therefor by each level of
refinement number of cells increases by factor 8!

Refinement level 0, level 1, level 2, level 3

The castellatedMeshControls sub-dictionary is used for user-defined mesh refinement in
the castellating step.

OpenFOAM® Basic Training

Tutorial Twelve

features allows special treatment of the “*.extendedFeatureEdgeMesh” edges to be refined to
a certain level.

refinementSurfaces are for surface based refinement. Every surface is specified with two
levels. The first level is the minimum level that every cell intersecting the surface gets refined
up to. The second level is the maximum level of refinement.

resolveFeatureAngle is an important setting. Edges, whose adjacent surfaces normal are at
an angle higher than the value set, are resolved. The lower the value, the better the resolution at
sharp edges.

refinementRegions: Volume based refinement of the regions defined in the geometry
section. In this tutorial the refinementHole region will be refined. In the levels the first
number (1E15) is the maximum number of the cells which can be reached after refinement in
this region and second number (3) is the level of refinement

locationInMesh: Important coordinate for single region cases, to define which part of the
mesh should be kept, inside or outside the geometry.

 // * * * * * * * ** //

castellatedMeshControls
{
 maxLocalCells 100000;
 maxGlobalCells 2000000;
 minRefinementCells 0;

nCellsBetweenLevels 1;

 features
 (
 {
 file "flange.extendedFeatureEdgeMesh";
 level 0;
 }
);

 refinementSurfaces
 {
 flange
 {
 level (2 2);
 }
 }

 resolveFeatureAngle 30;

 refinementRegions

{
 refineHole
 {
 mode inside;
 levels ((1E15 3));

 }
 locationInMesh (-9.23149e-05 -0.0025 -0.0025);

 allowFreeStandingZoneFaces true;
}

 // * * * * * * * ** //

Note: The locationInMesh point should never be on a face of the mesh, even after refinement.
It should always be inside a cell or the meshing will fail!

OpenFOAM® Basic Training

Tutorial Twelve

In the castellated step, the background mesh will be refined based on the defined refinement levels
at features, surfaces or regions and the unneeded part of the mesh will be removed.

SNAPPING

Important parameters are number of mesh displacement iterations, nSolveIter and the number of
feature edge snapping iterations, nFeatureSnapIter.

 // * * * * * * * ** //

snapControls
{
 nSmoothPatch 3;
 tolerance 1.0;
 nSolveIter 300;
 nRelaxIter 5;
 nFeatureSnapIter 10;
 implicitFeatureSnap false;
 explicitFeatureSnap true;
 multiRegionFeatureSnap true;
}

 // * * * * * * * ** //

LAYERING

The label for the layering is equal to the labeling of the Boundary surface in the boundary file in the
constant/polyMesh folder.

- nSurfaceLayers defines the number of surface layers
- expansionRatio defines the expansion ratio of the surface layers
- finalLayerThickness and minThickness define the min and the final thickness of the

surface layers
- nLayerIter: if not snapped smoothly enough, the max number of layer addition iteration can

be increased.

 // * * * * * * * ** //

addLayersControls
{
 relativeSizes true;
 layers
 {
 “flange_.*”
 {
 nSurfaceLayers 3;
 }
 }

expansionRatio 1.005;

 finalLayerThickness 0.3;
 minThickness 0.25;
 nGrow 0;
 featureAngle 30;
 nRelaxIter 5;
 nSmoothSurfaceNormals 1;
 nSmoothNormals 3;
 nSmoothThickness 10;
 maxFaceThicknessRatio 0.5;
 maxThicknessToMedialRatio 0.3;
 minMedianAxisAngle 90;
 nBufferCellsNoExtrude 0;

nLayerIter 50;
nRelaxedIter 20;

}
meshQualityControls
{

OpenFOAM® Basic Training

Tutorial Twelve

 #include "meshQualityDict"
relaxed
{
 maxNonOrtho 75;
}

nSmoothScale 4;

 errorReduction 0.75;
}
writeFlags
(
 scalarLevels
 layerSets
 layerFields
);
mergeTolerance 1e-6;

 // * * * * * * * ** //

Note: Only the relevant changes, which were used in the sample flange case, are commented in
the snappyHexMeshDict.

2. Running snappyHexMesh
The background mesh is created with the following command:
>blockMesh

According to the settings in the blockMeshDict, the mesh was created with 20 cells in x direction,
16 cells in y direction and with 12 cells in z direction.

Block mesh for flange

>surfaceFeatures

OpenFOAM® v1906: >surfaceFeatureExtract

The command to mesh the flange geometry on one processor is

OpenFOAM® Basic Training

Tutorial Twelve

>snappyHexMesh

Note: The meshing process with snappyHexMesh can also be run in parallel. To run the command
on several processors, refer to Tutorial Eight for more information.

The command snappyHexMesh creates a folder with the mesh files for each mesh step. If, for
example, in the snappyHexMeshDict, only castellatedMesh is set to true and snap and addLayers
are set to false, only one folder is created. If also snap is set to true, 2 folders are created and if also
addLayers is set to true, 3 folders with 3 polyMesh folders are created.

Folders structure after running snappyHexMesh

In order to avoid the creation of these folders and only keep the final mesh, the following command
can be used to overwrite the previous meshing steps. In this case, only one polyMesh folder exits in
the /constant directory.

Folders structure after using -overwrite flag

>snappyHexMesh --overwrite

However, sometimes it is useful to run snappyHexMesh without the overwrite option, as it allows
the user to make changes to a specific time step without having to run all the other steps again, thus
reducing computational time.

3. Examining the meshes
To examine, what each of the steps in the snappyHexMeshDict really does, we need to turn off the
overwrite feature in snappyHexMesh command and generate VTK files to be opened in ParaView.

OpenFOAM® Basic Training

Tutorial Twelve

>foamToVTK

Simply change the time in Paraview to see the effect of snappyHexMesh steps on the mesh, i.e. time
1 corresponds to the mesh after castellating step, time 2 for the mesh after snapping step, time 3 for
the mesh after the layering step.

Flange mesh for step castellating with surface refinement level 2

Flange mesh for step castellating with surface refinement level 3

Flange mesh for step snap with surface refinement level 3

OpenFOAM® Basic Training

Tutorial Twelve

Flange mesh for step addlayers with surface refinement level 3

The slice views taken with ParaView from the center of the flange. The slices are depicted by the
red plain in the following figure:

Flange with sectional plain

You can review the mesh quality with the tool checkMesh.
>checkMesh

4. Running simulation

4.1. Copy tutorial
Now with the new mesh ready, let’s run some simulation on it! Here scalarTransportFoam solver is
chosen for the simulation. To set up the case, copy the following tutorial file into your working
directory:
$FOAM_TUTORIALS/basic/scalarTransportFoam/pitzDaily

The flange mesh files need to be transferred to the running case directory. To achieve this, copy the
polyMesh folder from the latest time step file of the flange folder into the constant directory of the
pitzDaily folder. If the overwrite function is activated when running snappyHexMesh, copy the
polyMesh folder from constant directory of the flange folder.

OpenFOAM® Basic Training

Tutorial Twelve

4.2. Case set-up
The following changes need to be made to set up the case:
- Update the T file in the 0 directory, so that the flange has an initial temperature of 293K but is

heated up from the inlet at 350K

dimensions [0 0 0 1 0 0 0];

internalField uniform 293;

boundaryField
{
 flange_patch1
 {
 type fixedValue;
 value uniform 350;
 }
 flange_patch2
 {
 type fixedValue;
 value uniform 293;
 }
 flange_patch3
 {
 type fixedValue;
 value uniform 293;
 }
 flange_patch4
 {
 type fixedValue;
 value uniform 350;
 }
}

- Update the U file in the 0 directory so that the velocity in the entire flange domain and at the
boundaries is zero

- Update the controlDict file in the system directory by changing the endTime to 0.0005,

deltaT to 0.000001 and writeInterval to 100.

4.3. Running solver
Run the solver with the command
>scalarTransportFoam

4.4. Results
Convert the results to VTK files with
>foamToVTK

OpenFOAM® Basic Training

Tutorial Twelve

 0.00001s 0.00002s 0.00003s

 0.00004s 0.00005s

Heating of the flange from 0.01 to 0.05s

Tutorial Thirteen

snappyHexMesh – Multi-Region

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Thirteen

Editorial board:

• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Philipp Schretter
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such

as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license terms

of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Thirteen

Background

1. Multi-region modeling & why do we need it?

In multi-region modeling, the entire computational domain is divided into individual regions, with
each region representing a coherent continuum of the same phase. The key feature of this type of
modeling is that separate governing transport equations are solved for each region.

In general, two different approaches have been adopted in the past to solve multi-region problems:
• Monolithic: solve using a single coupled matrix equation system
• Partitioned: solve using separate matrix equation systems

In this OpenFOAM® tutorial, we are focusing on the partitioned approach. The fundamental steps in
this approach are outlined below:

1. Define the whole mesh domain and the separate regions within it. Assign cells into each
region

2. Specify field variables in each region
3. Solve the transport equation in each individual region
4. Multiregional coupling at the interface between different regions
5. Iteration to achieve fully/coupled solution

2. chtMultiRegionFoam solver

This solver is developed to solve heat transfer problems between multiple regions.

OpenFOAM® Basic Training

Tutorial Thirteen

snappyHexMesh - snappyMultiRegionHeater

Simulation

The procedure described in this tutorial is structured in the following order:

• Creation of the geometry data
• Tutorial on Meshing a geometry with more than one region
• Run an OpenFOAM® simulation with the generated mesh using chtMultiRegionFOAM

Objectives

• Understanding multi region meshing with the meshing tool snappyHexMesh

Data processing

Import your simulation to ParaView. Analyze the flow field through the flange and the heat
distribution in the flange.

OpenFOAM® Basic Training

Tutorial Thirteen

1. Pre-processing

1.1. Copy tutorial

Download the following tutorial to your working directory (the folders should be created by user
and then download the files and place them in relevant folders):

https://github.com/OpenFOAM/OpenFOAM-
5.x/tree/master/tutorials/heatTransfer/chtMultiRegionFoam

1.2. 0 directory

Unlike the single region simulations in the 0 directory an individual folder per region exist which
stores the files including initial and boundary conditions for that region. Also in the 0 directory
some files exists which are just dummy files that will not be used in the simulations. The initial and
boundary conditions for each region are changed and updated using the changeDictionary utility
which will be explained later.

OpenFOAM® v1906: Copy 0.orig folder and rename it to 0!

1.3. constant directory
Also in the constant directory exist a folder per region; in this case, the domain is split into the
following regions: bottom air, heater, left solid, right solid and top air. Within the designated folder,
there are relevant dictionaries that describe the physical properties, turbulence or radiation behavior
of each region, e.g. radiationProperties, turbulenceProperties and thermophysicalProperties.
The polyMesh directory in the constant folder includes the original mesh while the polyMesh
directories in each region folder include the split mesh for that region with the new boundaries
between regions.
Unlike polyMesh directories there exist just one triSurface folder which stores all the stl files for
mesh creation using snappyHexMesh.
In the regionProperties file, the physical phase of each region is specified. As you can see, bottom
and top air regions are fluid, whereas heater, left and right solid are in solid phase.

// *//

regions
(
 fluid (bottomAir topAir)
 solid (heater leftSolid rightSolid)
);

// *//

OpenFOAM® v1906: Copy the file g from constant/topAir to the constant directory!

1.4. system directory

Like constant directory also in system directory a folder per region can be found and all the settings
for that region are stored in the corresponding folder, e.g. fvSolution, fvSchemes and
decomposeParDict. The fvSchemes file in the system directory is a dummy file while the fvSolution
includes the number of outer correctors setting for PIMPLE algorithm. There is also just one
controlDict file and it is in main system folder.

Note: For running the simulations in parallel the decomposeParDict files for all the regions should

https://github.com/OpenFOAM/OpenFOAM-5.x/tree/master/tutorials/heatTransfer/chtMultiRegionFoam
https://github.com/OpenFOAM/OpenFOAM-5.x/tree/master/tutorials/heatTransfer/chtMultiRegionFoam

OpenFOAM® Basic Training

Tutorial Thirteen

have the same settings as the main one in the system directory. This is not valid for parallel meshing
using snappyHexMesh while it just uses the decomposeParDict file in the main system directory.

The files needed for creating a multi-region mesh are the same as the mesh for single-region, except

for slight differences in snappyHexMeshDict file:

locationInMesh: In a multi-region mesh this point is not used but it should be defined just as
a place holder.

refinementSurfaces: Different regions are defined in here. E.g. for the region BottomAir
all the faces and cells inside the bottomAir stl (each region stl should be a closed volume) file
are marked with bottomAir flag (in faceZone and cellZone).

// *//
castellatedMeshControls
{
 maxLocalCells 100000;
 maxGlobalCells 2000000;
 minRefinementCells 10;
 nCellsBetweenLevels 2;

 features
 (
 {
 file "bottomAir.eMesh";
 level 1;
 }

…
 {
 file "topAir.eMesh";
 level 1;
 }
);

 refinementSurfaces
 {
 bottomAir
 {

 level (1 1);
 faceZone bottomAir;
 cellZone bottomAir;
 cellZoneInside inside;
 }
…
 rightSolid
 {
 level (1 1);
 faceZone rightSolid;
 cellZone rightSolid;
 cellZoneInside inside;
 }
 }

 resolveFeatureAngle 30;

 refinementRegions
 {
 }
 locationInMesh (0.01 0.01 0.01);
 allowFreeStandingZoneFaces false;
}

// *//

After creation of the mesh and splitting to different regions the initial and boundary conditions
for each region can be manually set in the relevant region folders in 0 directory. This process can

OpenFOAM® Basic Training

Tutorial Thirteen

be also automated usind the changeDictionary utility. The dictionary file for this utility for each
region is in the relevant region folder in the system directory: changeDictionaryDict.

See below the changeDictionaryDict file for the heater region. In the boundary sub-dictionary
type of boundaries for minY, MinZ and maxZ are set to patch. Then for T the internal field will
be overwritten with uniform 300. In the next step all the boundaries in the T file for heater
region will be set to zeroGradient (“.*” means all the boundaries with any name) and after
that the bounadries with the name “heater_to_.*” will be changed to
turbulentTemperatureCoupledBaffleMixed and minY will be changed to fixedValue.

 // *//
boundary
{

minY
{
 type patch;
}
minZ
{
 type patch;
}
maxZ
{
 type patch;
}

}

T
{

internalField uniform 300;

boundaryField
{
 “.*”
 {
 type zeroGradient;
 value uniform 300;

 }
“heater_to_.*”
{
 type compressible::turbulentTemperatureCoupledBaffleMixed;
 Tnbr T;
 knappaMethod solidThermo;
 value uniform 300;
}
minY
{
 type fixedValue;
 value uniform 500;
}

}
 }
 // *//

In the meshQualityDict file, change the following line:

#includeEtc “caseDicts/meshQualityDict”

to

#includeEtc “caseDicts/mesh/generation/meshQualityDict.cfg”

OpenFOAM® v1906: Do not change the meshQualityDict file!

OpenFOAM® Basic Training

Tutorial Thirteen

OpenFOAM® v1906: Add the pRefCell/pRefValue lines to the fvSolution file for the bottomAir
region:
PIMPLE
{
 momentumPredictor yes;
 nCorrectors 2;
 nNonOrthogonalCorrectors 0;
 pRefCell 0;
 pRefValue 1e5;
}
Add the missing “;” to the fvSolution files for bottomAir and topAir regions:

Note: Add the missing “;” to the fvSolution files for bottomAir and topAir regions:

“(rho|rhoFinal)”
{
 solver PCG;
 preconditioner DIC;
 tolerance 1e-7;
 relTol 0;
}

2. Mesh creation and running simulation
The background mesh is created with blockMesh.
>blockMesh

Equal to the single region case, the command surfaceFeatureExtract creates the eMesh files
from the stl files with the geometry data. Also the folder extendedFeatureEdgeMesh is created in
the constant directory. The creation of eMesh files with the command surfaceFeatureExtract
is not obligatory. This step is only necessary, if certain edges need to be refined.
>surfaceFeatureExtract

For performing the meshing in parallel, the geometry needs to be decomposed prior to running
snappyHexMesh. Depending on the number of subdomains, defined in the decomposeParDict, the
processor folders are created accordingly.

>decomposePar

Note: It is recommended, not to use the scotch method to decompose the region. Rather, the
hierarchical or the simple method should be used. In case of scotch method, errors can occur while
executing snappyHexMesh or while reconstructing the mesh.

In order to prevent the creation of the folders 1, 2 (castellation and snapping features are turned on
while layering is turned off) and only keep the final time step folder with the final mesh, the
command -overwrite can be added after snappyHexMesh. In this case, only one folder, 0, is created
with the files pointLevel and cellLevel. The mesh data in this case is located in constant/polyMesh.
>mpirun -np 4 snappyHexMesh -parallel -overwrite

Note: If castellatedMesh and snap are set on true in the snappyHexMeshDict, only the snapped
mesh is stored, whereas the intermediate step castellatedMesh is overwritten. If castellatedMesh,
snap and addLayers are set on true in the snappyHexMeshDict, only the layered mesh is stored and
the previous intermediate steps castellatedMesh and snap are overwritten.

OpenFOAM® Basic Training

Tutorial Thirteen

In this case only the steps castellatedMesh and snap are set to true, as these steps are applied to the
whole mesh. The following command reconstructs the final mesh:
>reconstructParMesh --constant

After running the command reconstructParMesh, the following message appears in the
terminal window, which can be ignored:

This is an experimental tool, which tries to merge individual processor meshes back into one master
mesh. ...
Not well tested & use at your own risk!

After this step all the regions are meshed but the meshes are connected and needs to be split. In the
meshing step each region cells are marked with a flag and this flag will be used in the next step to
split the mesh. Mesh regions can be split using the following command which split the mesh based
on the flagged cellZones and overwrite the old meshes in the polyMesh directories in the region
folders (if any exist):
>splitMeshRegions -cellZones -overwrite

With the mesh ready, the next step is to apply appropriate field values to each region, according to
the changeDictionaryDict. This command needs to be repeated for each region, with the name of
the region specified after the prefix ‘–region’.

>changeDictionary --region heater
…
>changeDictionary --region topAir

Now the solver chtMultiRegionFoam is ready to be run.

>chtMultiRegionFoam

 Note: chtMultiRegionFoam can also be run on several processors.
3. Post-processing
The results need to be converted to VTK files for each region with flag -region.

>foamToVTK --region heater
…
>foamToVTK --region topAir

OpenFOAM® Basic Training

Tutorial Thirteen

Temperature profile of heater region at time 15s and 75s

Temperature profile of entire mesh at time 15s and 75s

Tutorial Fourteen

Sampling

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Fourteen

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Benjamin Piribauer
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the
work).

- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used,

such as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Fourteen

Background

1. Introduction to sampling

This tutorial is an introduction to the OpenFOAM® sampling utility. With this utility
one can extract sample data from certain selected surfaces or points in ones simulation
after or while running the simulation. If data is sampled while running one can use
sampling to observe the progress of the simulation and the correctness of the solution
without even reaching a write-interval.

Using a sample file in the system directory data can be sampled after the simulation or
by adding the needed functions to the controlDict it can be done while running a
simulation.

At the beginning of this tutorial the implementation for sampling using the sample
and the controlDict will be introduced and afterwards the different sampling options
in OpenFOAM® will be discussed.

OpenFOAM® Basic Training

Tutorial Fourteen

sonicFoam – shockTube

Tutorial outline

Simulate the flow along a shock tube for 0.007 s and use OpenFOAM® sampling
utility for extracting the data along a line during the simulation and after the
simulation.

Objectives

• Understand the function of sampling and how to use the sampling utility

Data processing

Import your simulation to ParaView to visualize it and analyze the extracted data with
sampling tool.

OpenFOAM® Basic Training

Tutorial Fourteen

1. Pre-processing
1.1.Copying tutorial

To test the sampling feature, we will use the shockTube tutorial covered in Tutorial
Three and extract data over a line between (-5 0 0) and (5 0 0).
$FOAM_TUTORIALS/compressible/rhoPimpleFoam/laminar/shockTube

OpenFOAM® v1906:
$FOAM_TUTORIALS/compressible/sonicFoam/laminar/shockTube

OpenFOAM® v1906: Create a copy of 0.orig folder and rename it to 0!

1.2.system directory

1.2.1.sample dictionary
The sample file can be found in the system directory.

// *
* * * * * *//

type sets;
libs (“libsampling.so”)

interpolationScheme cellPoint;

setFormat raw;

sets
(
 data
 {
 type uniform;
 axis x;
 start (-4.995 0 0);
 end (4.995 0 0);
 nPoints 1000;

}
);

fields (T mag(U) p);

// *
* * * * * *//

In the type the type of data to be sampled is defined, e.g. sets or surfaces. The
different options for interpolationScheme and setFormat will be discussed in a
later section.

In the sets sub-dictionary each set of data should be given a name, which is freely
chosen by the user, in this case the name is simply ‘data’. In the bracket for the set of
data, we need to specify the following criteria:
- type: specifies the method of sampling. Here uniform was chosen to make a

sample on a line with equally distributed number of points.

OpenFOAM® Basic Training

Tutorial Fourteen

OpenFOAM® v1906: The type is lineUniform!

- axis: to define how the point coordinates are written. In this case, x means that

only the x coordinate for each point will be written.
- Start/end: the endpoints of the line-sample are defined
- nPoints: number of points on our line

Outside of the data and sets bracket in the fields we have to define which fields we
want to sample.

1.2.2.controlDict
To have the option to sample for each time step instead of each write-interval or
sampling while the solver is running; instead of the sample dictionary additions in the
controlDict are needed.

In this part one will change the controlDict of the shockTube tutorial so that our line-
sampling from before will be executed while running, and per time step.

Add the following code to the end of the function sub-dictionary in the controlDict.

// *
* * * * * *//
…

functions
{
 #includeFunc mag(U)

 linesample
 {
 type sets;
 functionObjectLibs (“libsampling.so”);
 writeControl timeStep;
 outputInterval 1;

 interpolationScheme cellPoint;

 setFormat raw;

 sets
 (
 data
 {
 type uniform;
 axis x;
 start (-4.995 0 0);
 end (4.995 0 0);
 nPoints 1000;

 }
);

fields (T mag(U) p);

}
}
// *
* * * * * *//

OpenFOAM® Basic Training

Tutorial Fourteen

linesample sub-dictionary includes the settings for the sampling tool. Any arbitrary
name can be chosen instead of linesample. The chosen name will be the name of
the folder in the postProcessing directory after running the solver.

Inside our linesample sub-dictionary:
- type: sets or surfaces can be chosen. More types will be covered in a later

section.

- functionObjectLibs: provides the operations needed for the sampling tasks.

- writeControl: specifies the intervals in which sampling data should be

collected in the case of timeStep, depending on the outputInterval, sampling
data will get saved in dependence of the timeStep. In the case of
outputInterval being equal to 1, every time step sampling data will be saved.
Changing the interval to 2 means that data will be saved every 2 time steps.

2. Running simulation
To run the Tutorial go to your case directory in the terminal and use the following
commands:

>blockMesh
>setFields
>sonicFoam

3. Post-processing
After sonicFoam solver finishes running, based on your sampling approach the
following steps should be performed:

3.1.sample dictionary

use the sample command to extract your sample-data.

>postProcess --func sample

A new folder will appear in your case directory named postProcessing and in it a
folder named sample. In this folder all the sampling data will be stored in separate
folders for each write-interval.

3.2.controlDict

The postProcessing directory and all its subdirectories have been generated after the
first time step. Now it can be seen that for every time step a folder is generated instead
of only every write interval.

OpenFOAM® Basic Training

Tutorial Fourteen

Extracted data using sampling tool after 0.007 s

4. Types of sampling

There are 2 main types of sampling. The sets type, which was used in our example
above, and the surfaces type.

In the sets type of sampling different kinds of point samplings, like the line sampling
we used before, or some kind of cloud sampling are included. In the surface type
whole surfaces are sampled, like near a patch, or on a plane defined by a point and a
normal vector.

Let’s discuss the similarities between the set and surface types. If the sampling
happens in the controlDict the 4 entries discussed in the controlDict section of this
tutorial need to be included for both types. On top of that both types need an
interpolation scheme. Here only two of the schemes: cell and cellPoint will be
discussed. The cell scheme assumes that the cell centre value as constant in the whole
cell. The cellPoint scheme will carry out linear interpolation between the cell
centre and vertex values. Lastly the field bracket looks the same for both cases.

4.1. sets

All sets need a setFormat, for example csv which needs to be included after the
interpolationScheme.
After that the sets sub-dictionary begins where a bracket with an arbitrary name
begins in which the sets sampling type and the geometrical location of the sampling
points will be chosen. In the following a few of sampling types will be discussed.

4.1.1. uniform

This one was used in the above example. A line from a start point to an end point with
a fixed number of points evenly distributed along it.

OpenFOAM® Basic Training

Tutorial Fourteen

axis determines what is written for the point coordinate in the output file. distance
means it will only write the distance between sampled point and start point in the file.

lineX1
 {
 type uniform;
 axis distance;

 start (0.0201 0.05101 0.00501);
 end (0.0601 0.05101 0.00501);
 nPoints 10;

}

4.1.2. face

This type also samples along a line from a defined start to endpoint, but only writes in
the log file for every face the line cuts.

lineX2
 {
 type face;
 axis x;

 start (0.0001 0.0525 0.00501);
 end (0.0999 0.0525 0.00501);

}

4.1.3. cloud

The cloud type samples data at specific points defined in the points bracket.
somePoints
 {
 type cloud;
 axis xyz;
 points ((0.049 0.049 0.00501)(0.051 0.049 0.00501));

}

4.1.4. patchSeed

The patchSeed sampling type is used for sampling patches of the type wall. One can
for example sample the surface adsorption on a wall with this type.
patchSeed
 {
 type patchSeed;
 axis xyz;
 patches (".*Wall.*");
 maxPoints 100;

}

Please note that for patches only a patch of type wall can be used. If you choose a
wrong type, nothing will be sampled and you receive no error message.

4.2. surfaces

All surfaces need a surfaceFormat specified. Practical formats would be the vtk
format which can be opened with paraview and the raw format which can be used for
gnuplots. Instead of the sets bracket now a surfaces bracket must be used and the
type is of course also surfaces. Inside the surfaces brackets one can now sample
an arbitrary number of surfaces, each in its own inner brackets. The different types of

OpenFOAM® Basic Training

Tutorial Fourteen

surface sampling like the plane in the example below will be discussed in the next
sections.
 type surfaces;

 interpolationScheme cellPoint;
 surfaceFormat vtk;

 fields
 (
 U
);

 surfaces
 (
 yoursurfacename
 {
 type plane;
 basePoint (0.1 0.1 0.1);
 normalVector (0.1 0 0);
 triangulate false;
 }
);

4.2.1. plane

The type plane creates a flat plane with an origin in the basePoint normal to the
normalVector. This normalvector starts in the origin, not in the basePoint. To
turn the triangulation of the surface off one has to add triangulate false.
constantPlane
 {
 type plane; // always triangulated
 basePoint (0.0501 0.0501 0.005);
 normalVector (0.1 0.1 1);

 //- Optional: restrict to a particular zone
 // zone zone1;

 //- Optional: do not triangulate (only for surfaceFormats that support
 // polygons)
 //triangulate false;
 //interpolate true;
 }

One can also set a new origin for the basePoint and normalVector with
coordinateSystem
 {
 origin (0.0501 0.0501 0.005);
 }

4.2.2. patch

A sampling of type patch can sample data on a whole patch. Please note that while
the syntax looks the same as in the patchSeed case, also patches that are not of type
wall work. Default option will triangulate the surface, this can be turned off with
triangulate false.
walls_interpolated
 {
 type patch;
 patches (".*Wall.*");
 //interpolate true;
 // Optional: whether to leave as faces (=default) or triangulate
 // triangulate false;
 }

4.2.3. patchInternalField

OpenFOAM® Basic Training

Tutorial Fourteen

Similar to the patch type, this type needs a patch on which it samples. It will sample
data that’s a certain distance away in normal direction (offsetMode normal). There
is also the option to define the distance in other ways seen in the commented section
of the code.
Note: While the sampling happens not on the patch but a distance away from it, the
geometric position of the sampled values in the output file will be written as the
position of the patch.

Once again the default triangulation can be turned off with triangulate false.
nearWalls_interpolated
 {
 // Sample cell values off patch.
 // Does not need to be the near-wall
 // cell, can be arbitrarily far away.
 type patchInternalField;
 patches (".*Wall.*");
 interpolate true;

 // Optional: specify how to obtain
 // sampling points from the patch
 // face centres (default is 'normal')
 //
 // //- Specify distance to
 // offset in normal direction
 offsetMode normal;
 distance 0.1;
 //
 // //- Specify single uniform offset
 // offsetMode uniform;
 // offset (0 0 0.0001);
 //
 // //- Specify offset per patch face
 // offsetMode nonuniform;
 // offsets ((0 0 0.0001) (0 0 0.0002));

 // Optional: whether to leave
 // as faces (=default) or triangulate
 // triangulate false;
 }

4.2.4. triSurfaceSampling

With the triSurfaceSampling type data can be sampled in planes which are
provided as a trisurface stl file. To create such a file one can use the command below.
The command will generate a .stl file of one (or more) of your patches.

>surfaceMeshTriangulate name.stl -patches "(yourpatch)"

Here your patch needs to be replaced with the name of one of your patches defined in
the constant/polyMesh/boundary file. Starting the command without the patches
option will generate a stl file of your whole mesh boundary. Next make a directory in
the constant folder named triSurface if it doesnt already exis t and copy the .stl file
there. In the code you now have to specify your stl file as the surface. For the source
the use of boundaryFaces seems to be a good option of the stl file is one of your
patches.

triSurfaceSampling
 {
 // Sampling on triSurface
 type sampledTriSurfaceMesh;

OpenFOAM® Basic Training

Tutorial Fourteen

 surface integrationPlane.stl;
 source boundaryFaces;
 // What to sample: cells (nearest cell)
 // insideCells (only triangles inside cell)
 // boundaryFaces (nearest boundary face)
 interpolate true;
 }

Note: Most CAD software can export the surface of 3D drawings as stl files.

4.2.5. isoSurface

The isoSurface sampling type is quite different to what was discussed before in
this tutorial. Until now all the sampling types had a constant position in space and
changing field values at that position were extracted. With the isoSurface sampling
one tracks the position of a defined value in space. The example below can be copied
into the shocktube tutorials sample file (of course it needs all the other options needed
for surface type sampling).
Using vtk for the surfaceFormat one can visualize the moving shockwave in
space. Note that both the vtk of the sampling and the whole shocktube case can be
opened together in paraview to compare the results.
Note that the isoField needs to be a scalarfield.

interpolatedIso
 {
 // Iso surface for interpolated values only
 type isoSurface;
 // always triangulated
 isoField p;
 isoValue 9e4;
 interpolate true;

 //zone ABC;
 // Optional: zone only
 //exposedPatchName fixedWalls;
 // Optional: zone only

 // regularise false;
 // Optional: do not simplify

 // mergeTol 1e-10;
 // Optional: fraction of mesh bounding box
 // to merge points (default=1e-6)
 }

4.2.6. isoSurfaceCell

The isoSurfaceCell type is very similar to the one we discussed before, but this
one doesn’t cross any cell with its surface and doesn't interpolate values.
constantIso
 {
 // Iso surface for constant values.
 // Triangles guaranteed not to cross cells.
 type isoSurfaceCell;
 // always triangulated
 isoField rho;
 isoValue 0.5;
 interpolate false;
 regularise false;
 // do not simplify
 // mergeTol 1e-10;
 // Optional: fraction of mesh bounding box
 // to merge points (default=1e-6)
 }

Appendix A

Linux Commands

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Appendix A

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• Unix (Linux, Alpha Unix …)

Cover picture from:

• Bahram Haddadi

Contributors:
• Christian Jordan
• Bahram Haddadi
• Clemens Gößnitzer
• Jozsef Nagy
• Vikram Natarajan
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the
work).

- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used,

such as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Appendix A

cat, more, less

File viewer with pure read function - in order of ease of operation. In
less with pagedown/pageup you can navigate within the file, with / and
? can look for strings, q can be used for closing less. cat is back for
universally available on Unix.

cd, cd ..

Changing the directory, cd .. goes one directory up and cd ~ moves to
home directory. Important to note is the space between cd and .. as
opposed to DOS!

cp, cp -r

Copying files or entire directory trees (with -r option). Caution: There is
no warning or prompt when overwriting existing files! The important
thing is that a target has to be always given, at least one . which means,
copy to the current directory.

ctrl+r Reverse search, for searching an already typed command in a terminal
window.

du, du -s,
du -k

Calculates the amount of space consumed in a directory. For safety
reasons you should use the -k option (output in kilobytes), since some
systems provide the space in blocks that include only 512 bytes ...

exit Closing connection (terminal window).

gedit Text editor with graphical user interface. When working with gedit

some temporary files (originalFileName~) are created, they can be
deleted after saving.

grep Search command for plain-text data sets for lines matching a regular
expression.

gzip, gunzip

Compression/decompression program for individual files (as opposed to
zip/unzip, this can also work on directories or file lists). The great
advantage of gzip: Fluent® and OpenFOAM® are able to read and write
gz files directly, which saves about 30-90% space.

kill, kill -9

Stopping processes. For this the process ID is required, which can be
found with top or ps. The Exit is irrevocable course - but you cannot
shoot processes, if you are not the "owner".

ls, ls –la

Lists the contents of a directory, with option -la also hidden files are
displayed, as well as the file size and characteristics.

OpenFOAM® Basic Training

Appendix A

mc Program that enables navigation in the text window, esc-keys, may be
necessary: mc -c, for navigating through mc use function keys or
esc+[number] combination, e.g. F9 or esc+9 for moving to the menus at
the top.

mkdir

Creates a new directory.

mv Moving or renaming files and directories. Caution: There is no prompt
when overwriting existing files!

Nano, pico The command to run the nano text editor, a terminal based text editor.

passwd

The command to change the login password.

| It is known as pipe and is used for merging two commands, redirecting
one command as input to another, e.g. less|grep searches a specified
word in the output of file opened with less.

ps, ps –A
ps waux

Lists all the processes that were started in the respective command
window with the options are all running processes on the system
display.

pwd

Shows the current working directory.

rm,
CAUTION:
rm -fr

Deletes files. The option -r will also remove directories and files
recursively and delete directories, f (force) prevents any further inquiry.
- Incorrectly applied, this command can lead to irreversible loss of all
(private) data. There is no undelete or undo!

rmdir

Deletes an empty directory.

scp

The copy command over the network - as secure FTP replacement. Also
dominates the -r (recursive) option. Usage: scp source file destination
file with source and the destination format can be USERNAME@
COMPUTER.DOMAIN:PATH/TO/FILE. Source or target can of course
also be created locally, then (your) user name and computer are not
required.

ssh

Telnet replacement with encryption. On Windows, for example,
implemented with putty.

OpenFOAM® Basic Training

Appendix A

tail, tail -f

File viewer, the default outputs the last 10 lines of a file. With option -
n XX can spend the last XX lines, with the -f option, the command is
running from those lines, which are attached to a file. The command is
therefore perfect for watching log files.

top Displays a constantly updated list of all running processes, with process
ID, memory and CPU usage. For processes of one user top [username]
should be used, and for quitting q or ctrl+c should be applied.

vi, vim File editor. For forward searching use /, for backward searching use ?.

For exiting esc+:x. nano or pico are recommended for beginners, which
are easier to handle.

Appendix B

Running OpenFOAM®

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Appendix B

Editorial board:

• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Bahram Haddadi

Contributors:
• Christian Jordan
• Bahram Haddadi
• Jozsef Nagy
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the
work).

- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used,

such as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Appendix B

Part A) Running OpenFOAM® on a Local Linux PC (or virtual machine):

• Open a terminal

• Go to the OpenFOAM® installation directory (e.g. /opt/openfoam7) in the
opened terminal

• Change to the etc directory in the OpenFOAM® installation directory

• Run the following command:

>. ./bashrc

• If a new terminal is opened, the same procedure should be repeated in that in
order to activate OpenFOAM® in here.

Part B) Running OpenFOAM® on Remote Computers via SSH (e.g. server):
B-1) Windows:

• Run PuTTY (search for: PuTTY windows).

• Set the following:

Category>Session

Host name: openhost.university.edu

Connection type: SSH

Category>Connection>SSH>Tunnels

Source port: 5901

Destination: localhost:59**1

• Do not forget to press Add!

Please make sure that display is not used by others.
Category>Connection>Data

Auto-login username: openFoamUser2

Category>Session

Saved Sessions: openFoamUser

• Press Save.

• Now choose from “saved sessions” your session (openFoamUser) and press
Open. In the opened Command (Prompt) window, it prompts for your

1 Display number
2 Session ID

http://the.earth.li/%7Esgtatham/putty/latest/x86/putty.exe

OpenFOAM® Basic Training

Appendix B

password. The password is not echoed to the screen and the passwords are
case sensitive.

• Immediately after entering your password, your computer will attempt to
establish a connection to your server. If it is your first time connecting to that
server, you will see a message asking you to confirm the identity of the
machine. Make sure you entered the address properly, and type yes, followed
by the return key, to proceed.

• Change to etc directory in OpenFOAM® installation directory

• Execute the following command:

>. ./bashrc

• To log out use whatever command is used to logout from the server you are
logged into (typically ctrl + d).

B-2) Mac OS X and Linux:

• Open your Terminal application. You will see a window with a $ or > symbol
and a blinking cursor. From here, you may issue the following command to
establish the SSH connection to your server (be careful about upper case ‘L’ in
the -gL).

>ssh -gL 5901:localhost:59** openFoamUser@university.edu

• Immediately after issuing this command, your computer will attempt to
establish a connection to your server. If it is your first time connecting to that
server, you will see a message asking you to confirm the identity of the
machine. Make sure you have entered the address properly, and type yes,
followed by the return key, to proceed.

• You will then be prompted to enter your password. Type or copy/paste your
SSH user password into the Terminal. You will not see the cursor moving
while entering your password. This is normal. Once you are finished inputting
your password, press return on your keyboard. At this point, you will be
connected to your server remotely through SSH.

• Change to etc directory in OpenFOAM® installation directory

• Execute the following command:

>. ./bashrc

Part C) Running OpenFOAM® in Graphical Interface (VNC):

• Connect to remote machine via SSH connection using part B.

OpenFOAM® Basic Training

Appendix B

• Make sure VNC Server is installed on the remote machine and it is started (ask
administrator for display number, port and other information, for starting
VNC Server check FAQ)

• Install the appropriate VNC Viewer and run it (search for: vnc viewer):

VNC Server: localhost:01

• Press Connect

• Press Continue

• Enter your password

• Press Ok

• On VNC desktop open a terminal

• Change to etc directory in OpenFOAM® installation directory

• Execute the following command:

>. ./bashrc

• If a new terminal in the VNC desktop is opened, the last two steps should be
done in that to activate OpenFOAM® in there.

http://www.chip.de/downloads/RealVNC_12997724.html

Appendix C

Frequently Asked Questions

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Appendix C

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906
• Unix (IRIX, Alpha Unix …)

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Christian Jordan
• Jozsef Nagy
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the
work).

- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used,

such as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Appendix C

Q - What should I do in case of a GAMBIT failure?
A - e.g. Program stops responding:

• Type "ps" in the command window, search for the GAMBIT process number.
• "kill -9 PROCESS NUMBER" Enter

GAMBIT creates lock files, which must also be deleted, otherwise it is not
possible to open of the affected files:
• "rm *. lok" Enter

Furthermore, "junk" (temporary files from GAMBIT) should be disposed of:
• "rm -fr GAMBIT.xxx" erases the complete directory, xxx again is the

process number.
• If you have forgotten, to save before the crash, you should copy the file

"jou" (it contains all the commands that have been executed and can be
processed automatically in GAMBIT) from the directory, to resume its
status before the crash.

Q - How can I prevent typing long commands in the terminal for couple of times?
A - Using curser keys to navigate line by line.

Type beginning of the command and use Tab (auto completion).

By using reverse search, use ctrl+r to search for previous commands typed in
the terminal, e.g. typing a part of command show the suggestions and you can
navigate through them.

Q - My VNC is not responding from server side?
A - First you should kill your VNC server:

>vncserver -kill :[YOUR DISPLAY NUMBER]

Restart your VNC server (according to SSH forward):
>vncserver:[YOUR DISPLAY NUMBER] -geometry 1600x800 -depth
24

Q - I have deleted some of my files accidently. What should I do?
A - Sorry, no recycling or undelete in Linux

Q - Why can I not connect to the server?
A - Check to see if you have an IP address for your network card.

Q - How can I start VNC Viewer from my Linux computer terminal?

A - Use command:
>vncviewer :[NUMBER OF LOCAL PORT, e.g. 1 or 2]

Q - Error “command not found”?
A - Make sure OpenFOAM® and ParaView are installed correctly. Check Appendix

B for starting OpenFOAM®.

OpenFOAM® Basic Training

Appendix C

Q - Does foamToVTK command not work for chtMultiRegionFoam?
A - Use command:

>foamToVTK -region[REGION NAME]

Q - Is it possible to export animations from ParaView?
A - Yes, by choosing .ogv file format from “file/save animation” menu. The output

will be a video file with .ogv format. In the new ParaView versions (4.3.0) the
animation can also be saved using .avi format.

Q - Is there any tool in Linux to convert series of ParaView pictures to video?
A - Yes, command line tool ffmpeg:

>ffmpeg -r [FRAME PER SECOND RATE] -f image2 -i [images
names, e.g. rho.%4d.jpg] [OUTPUT FILE NAME].[OUTPUT FILE
FORMAT, e.g avi]

Q - How can complex geometries be patched?
A - During creating the geometry in the preprocessing software, e.g. GAMBIT,

create volume zones, which you will need to patch later (see software user
manual for creating regions in each software). For converting the mesh to the
OpenFOAM® mesh use the appropriate tool with “-writeZones” flag to import
zones to OpenFOAM®, e.g.:
>fluentMeshToFoam -writeZones <your mesh>

then in the setFieldDict change it like this:

regions
(
 zoneToCell
 {
 name air; // region name which you assigned in gambit
 fieldValues
 (
 volScalarFieldValue alpha.water 0 // the value of property
 //which you want to patch
);
 }
);

Then after running setFields tool, it will assign the values to that region.

Q - How can I create a bash scripting file for executing couple of command in
series?

A - Instead of typing command sequences one by one after each other and executing
them. It is possible to put all those commands in a file and execute that file to
run them. This is known as “bash scripting”.
Bash scripting is typically used in the cases when the same simulation should be
run with identical settings a couple of times, but with a few changes. For bash
scripting create an empty file (e.g. using nano editor creating text file “go”):
> nano go

Add the commands to this file (e.g. commands for running blockMesh,

OpenFOAM® Basic Training

Appendix C

setFields, decomposePar, compressibleInterFoam in parallel mode and
reconstructPar):

blockMesh
setFields
decomposePar
mpirun –np 4 compressibleInterFoam –parallel >log
reconstructPar

Exit the editor and save the file (ctrl+x , y, enter for nano editor).
For changing this file to an executable file, file permissions should be set. By
using this command file permissions are displayed:
>ls -la go

-rw-r--r-- 1 e166**** E020D166 73 Aug 23 9:15 go

The first ‘r’ shows that this text file can be read by user, the ‘w’ shows that user
has the permission to write this file, but the ‘–‘ sign shows that this file is not
executable by the user. To change this permissions execute following command:
>chmod u+x go

Now this file is executable:
>ls -la go

-rwxr--r-- 1 e166**** E020D166 73 Aug 23 9:15 go

Now you can run the simulation by this executable text file:
>./go

After executing the file, the commands added to the file will be executed one by
one. In most of the OpenFOAM® tutorials there are Allrun and Allclean files,
which are bash scripts for running the case and cleaning a case, respectively.

Q - How the cover mesh has been created?
A - Error: invalid question!

Appendix D

ParaView

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Appendix D

Editorial board:
• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• Paraview 5.6.0

Cover picture from:

• Bahram Haddadi

Contributors:
• Bahram Haddadi
• Jozsef Nagy
• Sylvia Zibuschka
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the
work).

- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used,

such as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Appendix D

1. Introduction to ParaView
The post-processing application for OpenFOAM® is ParaView, which is a free, open
source program. In this tutorial, different features and tools available in ParaView
5.6.0 will be explored.

ParaView Interface

The tree structure (“pipeline”) of ParaView helps the user to easily choose and display
suitable sub-models for creating the desired image or animation. Adding a mesh or
velocity vectors to a contour plot of pressure is an example of this functionality.

For generation operations, use the OpenFOAM® command foamToVTK to convert
OpenFOAM® files into readable formats for ParaView. Then open the .vtk file and
press the green Apply button in the Properties panel. The reset button is used for
resetting the window and deleting the selected operation.

2. ParaView Interface
2.1. Properties Panel

Properties panel

OpenFOAM® Basic Training

Appendix D

- Colouring

The drop-down menu for solid colour allows different field variables to be chosen
and viewed, for example, pressure and velocity magnitude.
The Rescale button allows the data range to be adjusted to fit the data, as
sometimes the max/min data range are not updated automatically.

- Scalar Coloring

The ‘Map Scalars’ option allows the scalar values to be mapped to a specific
colour using a lookup table.
Turning the option ‘Interpolate Scalars Before Mapping’ on or off will affect the
way the scalar data is visualized with colours. According to the ParaView
documentation, if it is turned on, scalars will be interpolated within polygons and
colour mapping will happen on a per-pixel basis; if off, color mapping occurs at
polygon points and colors are interpolated, which is generally less accurate[1].

- Styling

The opacity of the image can be set (1 = solid, 0 = invisible) in the Opacity option.
- Lighting

There are two options for Interpolation, Gouraud or Flat. With Gouraud shading
enabled, normals are defined only per point and no face normal is needed. If the
Interpolation is changed to Flat, only the face normals will be computed and used
for lighting, note that this option is not suitable for objects with smooth surfaces

[2].
- Backface Styling

This is an advanced feature in ParaView that enables the backface style of a wire
frame object to be changed.

- Transforming

The Transform filter allows you to translate, rotate and change the size and the
origin of the data sets.

- Miscellaneous

By default ParaView triangulate the cells and shows them as triangles. For
disabling this uncheck the “Triangulate” option in the Miscellaneous section of
the Properties panel.

- Glyph Parameters

The Glyth Parameters filter generates a glyph, which can be arrow, cone, box,
cylinder, line, sphere or a 2D glyph. The glyth is generated at each point in the
input dataset[3]. Depending on the type of glyph chosen, different options are
available to orientate, scale and size the glyph.

- Orientation Axes

The Orientation Axes feature controls an axes icon in the image window (e.g. to
set the color of the axes labels x, y and z).

OpenFOAM® Basic Training

Appendix D

- Lights

The lighting controls options appear when clicking on the Edit button. For
producing images with strong bright colors (e.g. isosurface) Headlight of strength
1 is appropriate.

- Background

The background color of the layout can be chosen from the drop-down menu, with
types Single color, Gradient and Image available.

2.2. Button toolbars

Button toolbars

Pull-down menus at the top of the main window and the major panels, in the toolbars
below the main pull-down menus increase the functionality of ParaView. The
function of each button can be easily understood by its icon, also any button
description can be found in the Help menu (keeping the mouse over an icon without
clicking on it will also give a short explanation on its functionality).
A feature worth mentioning is the drop-down menu next to the Reset button, this
provides the options of the different ways of presenting the mesh. To see the structure
of the mesh, use Surface with Edges; and to see both the cell structure and the interior
of the mesh, use Wireframe.
2.3. Color Map Editor Panel

Color map editor

The Choose preset button allows the color scheme of the scale to be chosen, a
common color scheme used is Blue to Red Rainbow. The Rescale to custom range
button allows the maximum and minimum values of the color scale to be freely
chosen by the user.
Another important feature can be used by clicking the button Edit color legend
properties on the top right of the panel, this allows the scale title, font style to be
changed.

OpenFOAM® Basic Training

Appendix D

3. Manipulating the view
3.1. Contour plots
Clicking on the Contour button in the Button Toolbars creates a contour plot. The
contour filter operates on any type of data set, but requires the input to have at least
one point-centered scalar (single-component) array. The output of this filter is
polygonal.

The chosen scalar field can be selected from a pull down menu. If the case is a 3D
case module, the contours will be a set of 2D surfaces that represent a constant value.
The Isosurfaces list in the Properties panel allows the user to specify the values at
which the isosurfaces are computed.

3.2. Introducing a cutting plane
Creating contour plots across a plane is more convenient than isosurfaces. Cutting
planes are the tools which can be used for this purpose, to create surfaces. This can be
done by clicking on the Slice button in the Button Toolbars. A cutting plate can be
manipulated and repositioned. In a similar way, the contour lines can also be derived
out of planes.

By default ParaView triangulate the cells and shows them as triangles. For disabling
this uncheck “triangulate the slice” option in the Properties panel of the slice.

3.3. Streamlines
To create tracer lines, click on the Stream Tracer button in the Button Toolbars.
Tracer points can be along a line or points, and this can be chosen in the Seed Type
drop-down menu in the Seeds section of the Properties panel. Usually, some trial and
error is needed for achieving the desired streamlines. The length of steps tracer takes
can be changed in the Streamline Parameters section of the Properties panel. A
smaller length increases calculation time but increases smoothness. For having high
quality images Tubes filter can be used after tracer lines have been created. There are
different types of tubes, not only cylindrical.

3.4. Vector plots
The Glyph filter is used for creating vector plots. Scale Mode menu in the properties
panel is used for:

- Setting the length of a vector, weather to be proportional to vector magnitude or
not, all with the same length (Vector).

- Controlling the base length of the glyphs (set Scale Factor).

4. Data Analysis
4.1. Plot over time
This option is available by clicking the Plot Selection Over Time button in the Button
Toolbars. This allows the data at one point to be plotted over the entire time range.
4.2. Plot over line
This option allows the data points to be plotted along a line at a specific time step.
Click on the Plot Over Line button. The Cartesian coordinates of the beginning and
ending points of the line can be specified in the Properties panel. Several variables

OpenFOAM® Basic Training

Appendix D

can be plotted at the same time, to turn each variable on or off and to change its
legend name, use the Series Parameters section in the Properties panel.
4.3. Integrate Variables
The Integrate Variables option is selected from the Filters menu. This tool integrates
point and cell data over lines and surfaces. It also computes length of lines, area of
surface, or volume[4]. Different data types available are Point Data, Cell Data, or
Field Data; this can be chosen in the Field Association section in the Properties panel.

5. Exporting Data
5.1. Image Output
For creating a screenshot of the graphs the easiest way is Save Screenshot from File
menu. After selecting it in the opened window the picture resolution can be set, and
by locking the aspect ratio, changing image resolution in one direction cause change
in its resolution in the other direction respectively. For high quality images a
resolution of more than 1000 pixels is a good choice.

5.2. Animation Output
Some animations can be saved in ParaView by selecting the Save animation option in
the File menu. The resolution and number of frames per time step can be specified.
You can save your animation by assigning a name and choosing the file format. The
most suitable file format is .ogv.
5.3. Data Output
The field values of a chosen variable (e.g. temperature or pressure) can be exported
into ExCel using the Save Data option in the File menu. The precision of the writer
can be chosen and there is an option to export data from all time steps.

OpenFOAM® Basic Training

Appendix D

