
Tutorial Two

Built in Mesh

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Two

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Two

Background

1. What is Mesh?

When studying fluid flow and heat transfer, mathematical equations known as
partial differential equations (PDEs) describe how physical properties such as
mass, energy, and momentum change over space and time. However, solving
these equations directly (analytically) is extremely difficult unless the problem
is very simple.

To solve PDEs numerically, these equations are discretized and converted from
a set of PDEs to a set of algebraic equations. This involves breaking the entire
fluid domain into many smaller, manageable sections. These small sections are
called grid cells, and together they form a mesh.

A mesh is like a net or grid that covers the entire area where fluid behavior is
analyzed. The finer (smaller) the mesh, the more accurately flow details can be
captured, but at the cost of increased computational demand. Choosing the
right mesh ensures a balance between accuracy and efficiency in simulations.

One of the most common numerical methods for solving these equations is the
finite volume method (FVM), which is explained below.

2. The Finite Volume Method (FVM)

OpenFOAM® applies the finite volume method (FVM) to simulate fluid flow. This
method works by applying a key equation called the transport equation, which
describes how physical property (such as velocity, temperature, or pressure)
moves through a fluid domain over time. The general transport equation is:

𝜕(𝜌𝜑)

𝜕𝑡
+ ∇ ∙ (𝜌𝜑𝒖) = ∇ ∙ (𝛤∇𝜑) + 𝑆𝜑

Rate of change
of φ inside fluid

element
+

Net rate of flow
of φ out of fluid

element
=

Rate of change of
φ due to diffusion

+
Rate of change of φ

due to sources

The finite volume method works by applying and integrating this equation over
a control volume (CV), which is a small section of the mesh. A mathematical
technique called the Gauss divergence theorem helps converting volume
integral terms in the equation into surface integrals. This allows for the
calculation of the amount of a property entering and exiting each grid cell,
ensuring that all properties are conserved throughout the simulation.

∫
𝜕

𝜕𝑡
(∫ 𝜌𝜑

𝐶𝑉

𝑑𝑉) 𝑑𝑡
∆𝑡

+ ∫ ∫ 𝒏 ∙ (𝜌𝜑𝒖)
𝐴

𝑑𝐴𝑑𝑡
∆𝑡

= ∫ ∫ 𝒏 ∙ (𝛤∇𝜑)
𝐴

𝑑𝐴𝑑𝑡
∆𝑡

+ ∫ ∫ 𝑆𝜑𝑑𝑉
𝐶𝑉

𝑑𝑡
∆𝑡

For time-dependent problems, the equation must also be integrated over a
small time step (Δt\Delta t) to account for changes in properties over time. This

OpenFOAM® Basic Training

Tutorial Two

step-by-step approach is essential for accurately capturing transient behaviors,
such as turbulence or shock waves.

3. Discretization of Transport Equations

Discretization of the transport equations is critical to the finite volume method
and is done using the mesh, which involves dividing the domain into smaller
regions.

In CFD, the meshes can be divided into two main categories:

• Structured meshes: These are arranged in a regular, grid-like pattern,
often using Cartesian coordinates (X, Y, Z directions). They are simple
to use but may not work well for complex geometries.

• Unstructured meshes: These use irregularly shaped grid cells and can
represent complex shapes, such as curved surfaces and complex
objects, more accurately.

Mesh generation in OpenFOAM® is done using built-in tools such as blockMesh
(for structured meshes) and snappyHexMesh (for unstructured meshes).
External software like GAMBIT® can also be used for creating meshes. This
tutorial focuses on using blockMesh, which provides a simple way to generate
structured grids. More advanced mesh generation using snappyHexMesh is
covered in Tutorial Twelve.

4. foamRun Solver – fluid module

In OpenFOAM® 12, the foamRun application serves as a versatile tool for
executing various solver modules. Unlike traditional/legacy solvers (e.g.
icoFoam) that are specific to certain types of simulations, foamRun dynamically
loads and runs a solver module which can be either defined in the simulation
setup or as a command-line argument. This modular approach enhances
flexibility, allowing users to select appropriate solver modules for their specific
simulation needs.

“fluid” is the solver module for steady or transient turbulent flow of compressible
fluids with heat-transfer with optional mesh motion and change.

OpenFOAM® Basic Training

Tutorial Two

fluid Solver – forwardStep

Tutorial outline

Using foamRun and fluid solver, simulate 10 s of flow over a forward step.

Objectives

• Understand blockMesh

• Define vertices via coordinates as well as surfaces and volumes via
vertices.

Data processing

Import your simulation into ParaView, and examine the mesh and the results in
detail.

OpenFOAM® Basic Training

Tutorial Two

1. Pre-processing

1.1. Copying tutorial

Copy the tutorial from the following folder to your working directory:

$FOAM_TUTORIALS/fluid/forwardStep

1.2. Case structure

1.2.1. 0 directory

There are two new files in the 0 folder, T and Ma. File T includes the initial
temperature values and Ma is the Mach number values which are calculated
using the OpenFOAM® function objects (this can be ignored for this tutorial).
Internal pressure and temperature fields are set to 1, and the initial velocity in
the domain as well as the inlet boundary is set to (3 0 0).

Note: As it can be seen, the p unit is the same as the pressure unit (kg m-1 s-2),
because fluid module is for compressible fluids.

Note: Do not forget that, this example is a purely numeric example (you might
have noticed this from the pressure values).

1.2.2. constant directory

By checking physicalProperties file, different properties of a compressible gas
can be set:

// *

* * * * * *//

thermoType

{

 type hePsiThermo;

 mixture pureMixture;

 transport const;

 thermo hConst;

 equationOfState perfectGas;

 specie specie;

 energy sensibleInternalEnergy;

}

// Note: these are the properties for a “normalized” inviscid gas

// for which the speed of sound is 1 m/s at a temperature of 1K

// and gamma = 7/5

mixture

{

 specie

 {

 molWeight 11640.3;

 }

 thermodynamics

 {

 Cp 2.5;

 Hf 0;

 }

 transport

 {

 mu 0;

 Pr 1;

 }

}

// *

* * * * * *//

OpenFOAM® Basic Training

Tutorial Two

In the thermoType, the models for calculating thermo physical properties of gas

are set:

- type: Specifies the underlying thermos-physical model, which in this

case is enthalpy based thermodynamics while incorporating the
equation of state using psi (compressibility)

- mixture: Is the model, which is used for the mixture, whether it is a

pure mixture, a homogeneous mixture, a reacting mixture or ….

- transport: Defines the transport model used. In this example a

constant value is used for viscosity.

- thermo: It defines the method for calculating heat capacities, e.g. in this

example constant heat capacities are used.

- equationOfState: Shows the relation which is used for the

compressibility of gases. Here ideal gas model is applied by selecting
perfectGas.

- energy: This key word lets the solver decide which type of energy

equation it should solve enthalpy or internal energy.

After defining the models for different thermos-physical properties of gas, the
constants and coefficients of each model are defined in the sub-dictionary
mixture. E.g. molWeight shows the molecular weight of gas, Cp stands for

heat capacity, Hf is the heat of fusion, mu is the dynamic viscosity and Pr shows

the Prandtl number.

By opening the momentumTransport the appropriate turbulent mode can be set
(in this case it is laminar):

simulationType laminar;

1.2.3. system directory

In this tutorial the mesh is not imported from other programs (e.g. GAMBIT®). It
will be created inside OpenFOAM®. For this purpose the blockMesh tool is
used. blockMesh reads the geometry and mesh properties from the
blockMeshDict file (found in the system directory):

>nano blockMeshDict

// *

* * * * * *//

convertToMeters 1;

vertices

(

 (0 0 -0.05)

 (0.6 0 -0.05)

 (0 0.2 -0.05)

 (0.6 0.2 -0.05)

 (3 0.2 -0.05)

 (0 1 -0.05)

 (0.6 1 -0.05)

 (3 1 -0.05)

 (0 0 0.05)

 (0.6 0 0.05)

 (0 0.2 0.05)

 (0.6 0.2 0.05)

 (3 0.2 0.05)

OpenFOAM® Basic Training

Tutorial Two

 (0 1 0.05)

 (0.6 1 0.05)

 (3 1 0.05)

);

blocks

(

 hex (0 1 3 2 8 9 11 10) (25 10 1) simpleGrading (1 1 1)

 hex (2 3 6 5 10 11 14 13) (25 40 1) simpleGrading (1 1 1)

 hex (3 4 7 6 11 12 15 14) (100 40 1) simpleGrading (1 1 1)

);

defaultPatch

{

 type empty;

}

boundary

(

 inlet

 {

 type patch;

 faces

 (

 (0 8 10 2)

 (2 10 13 5)

);

 }

 outlet

 {

 type patch;

 faces

 (

 (4 7 15 12)

);

 }

 bottom

 {

 type symmetryPlane;

 faces

 (

 (0 1 9 8)

);

 }

 top

 {

 type symmetryPlane;

 faces

 (

 (5 13 14 6)

 (6 14 15 7)

);

 }

 obstacle

 {

 type patch;

 faces

 (

 (1 3 11 9)

 (3 4 12 11)

);

 }

);

// *

* * * * * *//

As noted before units in OpenFOAM® are SI units. If the vertex coordinates
differ from SI, they can be converted with the convertToMeters command. The

number in the front of convertToMeters shows the constant, which should be

OpenFOAM® Basic Training

Tutorial Two

multiplied with the dimensions to change them to meter (SI unit of length). For
example:

convertToMeters 0.001;

shows that the dimensions are in millimeter, and by multiplying them by 0.001
they are converted into meters.

In the vertices part, the coordinates of the geometry vertices are defined, the

vertices are stored and numbered from zero, e.g. vertex (0 0 -0.05) is

numbered zero, and vertex (0.6 1 -0.05) points to number 6.

Note: In OpenFOAM® (and C++) counting starts from 0 and not 1!

In the block part, blocks are defined. The array of numbers in front each block

shows the block building vertices, e.g. the first block is made of vertices (0 1

3 2 8 9 11 10).

After each block, the mesh is defined in every direction. e.g. (25 10 1) shows

that this block is divided into:

- 25 parts in x direction

- 10 parts in y direction

- 1 part in z direction

As was explained in tutorial 1, even for 2D simulations the mesh and geometry
should be 3D, but with one cell in the direction, which is not going to be solved,
e.g. here number of cells in z direction is one and it’s because of that it’s a 2D
simulation in x-y plane.

The last part, simpleGrading(1 1 1) shows the size function, in this case 1

means there is no change in the cell size from one cell to another

In the boundary part, each boundary is defined by the vertices it is made of,

and its type and name are defined.

Note: For creating a face, the vertices should be chosen clockwise when
looking at the face from inside of the geometry.

2. Running simulation

Before running the simulation, the mesh has to be created. In the previous step,
the mesh and the geometry data were set. For creating it, the following
command should be executed from the case main directory (e.g. forwardStep):

>blockMesh

After that, the mesh is created in the constant/polyMesh folder. For running the
simulation, type the solver name form case directory and execute it:

>foamRun -solver fluid

Note: The solver can be also defined in the controlDict (which is the case here)
and then the simulation can be performed simply using foamRun command
without the solver flag.

OpenFOAM® Basic Training

Tutorial Two

3. Post-processing

The mesh is presented in the following way in ParaView, and you can easily
see the three blocks, which were created.

Mesh generated by blockMesh

Note: When a cut is created by default in ParaView, the program shows the
mesh on that plane as a triangular mesh even if it is a hex mesh. In fact,
ParaView changes the mesh to a triangular mesh for visualization, where every
square is represented by two triangles. For avoiding this when creating a cut in
ParaView in the Slice properties window, uncheck “Triangulate the Slice”.

The simulation results are as follows:

Time Pressure Velocity Temperature

0.5 s

1 s

10 s

Pressure, velocity and temperature contours at different time steps

