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Background 

1. What is CFD? 

Computational Fluid Dynamics (CFD) is a method used to analyze systems 
involving fluid flow, heat transfer, and related phenomena such as heat and 
mass transfer. This analysis is performed through computer-based simulations, 
which help in understanding how fluids behave under different conditions. CFD 
is a powerful tool used in a variety of fields, including aerospace, automotive, 
chemical engineering, environmental studies, and biomedical applications. 

The goal of CFD development is to create tools that are as reliable as other 
computer-aided engineering (CAE) methods like stress analysis. However, 
CFD is trickier due to the complex nature of fluid flow, which involves 
turbulence, variable properties, and nonlinear behavior. The mathematical 
foundation of CFD is based on the Navier-Stokes and continuity equations, 
which describe the motion of fluid substances and are derived from 
fundamental conservation laws (mass and momentum). These equations are 
partial differential equations that represent how fluid velocity, pressure, and 
density change over time and space. 

While CFD offers many advantages, such as cost reduction in experimental 
setups and the ability to simulate complex scenarios, it is not fully automated. 
A good understanding of the underlying physics is necessary to set up a reliable 
simulation and interpret results correctly. Additionally, even with advanced 
computational resources, real-time simulations are still challenging due to the 
intensive calculations required. CFD is typically used alongside experimental 
methods like wind tunnel testing to validate and improve results. 

CFD software comes in two main types: 

• Open-source and free (e.g., OpenFOAM®): Offers flexibility for 
modification and customization, making it popular in academic and 
research environments. 

• Commercial and closed source (e.g., ANSYS Fluent, COMSOL): 
Provides user-friendly interfaces, technical support, and advanced 
features, making it suitable for industrial applications. 

In this guide, the focus will be on OpenFOAM®, an open-source CFD software 
written in C++. It allows users to access, modify, and even develop custom 
solvers to meet specific research or industrial needs. OpenFOAM® is widely 
used due to its flexibility and extensive documentation, although it requires a 
good understanding of both CFD principles and programming basics. 

For beginners, it's helpful to think of CFD as a "virtual wind tunnel" where you 
can simulate fluid flow without physically building models or conducting real-
world experiments. This makes it a cost-effective and versatile tool, especially 
during the design and testing phases of engineering projects. 

CFD is not only limited to air and water flow simulations, and it is extensively 
used in modeling different sophisticated processes such as: weather patterns 
(meteorology), blood flow in arteries (biomedical engineering), combustion 
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processes in engines (mechanical engineering), pollution dispersion in the 
atmosphere (environmental engineering) and many more! 

2. Workflow of CFD 

A typical CFD workflow consists of three main stages: 

2.1 Pre-processing 

This stage involves setting up the simulation, including: 

• Geometry Definition: Creating the computational domain that 
represents the physical system. This can be done using CAD 
(Computer-Aided Design) software or built-in geometry tools in CFD 
software. The accuracy of geometry affects how well simulation 
represents the real-world scenario. Think of geometry as the "shape" or 
"structure" through which the fluid will flow. Beginners can start with 
simple geometries like pipes, ducts, or channels before progressing to 
complex designs. 

• Mesh Generation: Dividing the domain into smaller, non-overlapping 
elements (cells) to form a grid. The quality and density of the mesh 
significantly affect the accuracy of the simulation. Finer meshes are used 
in regions with high gradients (e.g., near walls, sharp edges, or around 
obstacles), while coarser meshes suffice for uniform flow areas. Meshes 
can be structured (regular grids) or unstructured (irregular shapes), 
depending on the complexity of the geometry. A structured mesh is 
easier to generate and solve but less flexible for complex geometries, 
while an unstructured mesh can fit intricate shapes better. Imagine the 
mesh as a net spread over your geometry. The tighter the net (finer 
mesh), the more detailed your simulation results will be. However, this 
also increases computational effort, so there's a balance to be found. 

• Model Selection: Choosing physical models to represent phenomena 
such as turbulence (e.g., k-epsilon, k-omega models), heat transfer, and 
chemical reactions. The selection depends on the flow regime (laminar 
or turbulent) and the specific application.  

• Fluid Properties: Defining parameters like density, viscosity, thermal 
conductivity, and specific heat capacity. These properties vary with 
temperature, pressure, or composition in complex simulations. 
Incompressible flow assumes constant density, while compressible flow 
accounts for changes in density due to pressure and temperature 
variations. 

• Boundary and Initial Conditions: Setting conditions at the domain's 
boundaries (e.g., velocity at an inlet, pressure at an outlet, wall 
conditions) and initial conditions for transient simulations. Proper 
boundary conditions are crucial for accurate results.  

The solution variables (e.g., velocity, pressure, temperature) are calculated at 
specific points within each cell. The mesh's resolution influences the 
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simulation's accuracy and computational cost. A mesh independence study is 
often performed to ensure that the results are not sensitive to the mesh size. 
This involves running simulations with progressively finer meshes until the 
changes in results become negligible. 

Tip for beginners: Start with a coarser mesh to get quick results, then gradually 
refine the mesh to see how it affects accuracy. This helps you learn how 
sensitive your simulation is to mesh density. 

2.2 Solver 

In this stage, numerical methods are applied to solve the governing equations 
of fluid flow, including: 

• Conservation Equations: Mass, momentum, and energy conservation 
laws are integrated over each control volume. These equations are often 
coupled, meaning changes in one variable affect others. For example, 
changes in velocity can influence pressure and vice versa. 

• Discretization: The continuous equations are converted into algebraic 
forms using methods like the finite volume method (FVM), which ensures 
conservation principles are maintained within each cell. Other methods 
include the finite difference method (FDM) and finite element method 
(FEM), though FVM is most common in CFD. Discretization involves 
approximating derivatives with algebraic expressions, allowing the 
equations to be solved numerically. 

• Solution Techniques: The resulting algebraic equations are solved 
iteratively until convergence is achieved. Common iterative solvers 
include the SIMPLE (Semi-Implicit Method for Pressure-Linked 
Equations) and PISO (Pressure-Implicit with Splitting of Operators) 
algorithms. Convergence is determined when changes in the solution 
between iterations fall below a predefined threshold. 

The finite volume method is widely used because it ensures the conservation 
of physical quantities within each control volume, making it both accurate and 
robust. It is also flexible for handling complex geometries and boundary 
conditions.  

Think of the solver as the "engine" of CFD—it's where all the heavy lifting 
happens to calculate how the fluid moves. Understanding how the solver works 
helps in troubleshooting and optimizing simulations. 

2.3 Post-processing 

This stage involves analyzing and visualizing the simulation results. Key tasks 
include: 

• Visualization: Using cutting planes, contour plots, vector fields, 
streamlines, and line plots to represent flow variables such as velocity, 
pressure, and temperature distributions. Visualization helps in identifying 
flow patterns, vortices, and areas of interest like high-pressure zones. 
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• Data Analysis: Evaluating physical quantities like forces (drag, lift), heat 
transfer rates, pressure drops, and flow rates. Quantitative analysis 
helps validate the simulation results against experimental data or 
theoretical predictions. 

• Validation: Comparing simulation results with experimental data or 
theoretical models to ensure accuracy. Sensitivity analysis may be 
conducted to understand the influence of different parameters.  

Popular post-processing tools include commercial software like TecPlot and 
Ensight, as well as open-source tools such as ParaView and SALOME. These 
tools allow for advanced visualization techniques, including 3D rendering and 
time-dependent animations, making it easier to interpret complex flow 
behaviors. 

Tip: Post-processing is not just about making pretty pictures. It helps you 
understand the flow physics and detect any errors or inconsistencies in your 
simulation. 

3. icoFoam Solver 

icoFoam is an OpenFOAM® solver suitable for analyzing incompressible, 
laminar flow of Newtonian fluids. It is based on the PISO algorithm (pressure-
implicit split-operator), which is essentially a pressure-velocity iterative 
procedure for transient problems. In each iterative step, PISO solves the 
momentum equation using one predictor step, with two further corrector steps 
for both velocity and pressure. 
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icoFoam – elbow 

Tutorial outline 

Using icoFoam solver, simulate 75 s of flow in an elbow for the following 
GAMBIT® meshes: 

• Tri-mesh (comes with OpenFOAM® tutorial) 

• Hex-mesh coarse (check GAMBIT® “elbow 2D” tutorial) 

• 2 times finer hex-mesh (refined previous step mesh) 

Objectives 

• Basic case setup in OpenFOAM® 

• Setting up initial values of p and U 

• Ensuring proper boundary definitions (imported boundaries from 
GAMBIT®, additional surfaces during conversion and boundaries definition in 
OpenFOAM®) 

Data processing 

Import your simulation to ParaView, extract data to make two diagrams (using 
spreadsheet calculators) of pressure and velocity magnitude along a line 
between two tubes, do the same for all three simulations.   
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1. Pre-processing 

1.1. Setting system environment 

Make sure your system environment is set correctly under the chosen version 
of OpenFOAM® (v12), check Appendix B Part A. 

1.2. Copying tutorial 

Open a terminal and copy the elbow tutorial from the following path to your 
working directory (see Appendix A for running a terminal in Linux): 

$FOAM_TUTORIALS/legacy/incompressible/icoFoam/elbow 

Note: The ‘$FOAM_TUTORIALS’ allows the tutorial to be extracted from the 
tutorial folder in the installation directory of OpenFOAM® under the current 
system environment.  

Note: The tutorial can also be simply copied from the mentioned directory using 
your file explorer. 

1.3.  Converting mesh 

The mesh, which is produced by GAMBIT®, is not directly compatible with 
OpenFOAM®. First, the mesh needs to be converted to an OpenFOAM® mesh, 
using the following tool: 

>fluentMeshToFoam elbow.msh  

Note: the ‘>’ sign is not part of the command. It is only used to show that the 
command should be typed inside a terminal.  

If the mesh was created in mm and is converted using the mentioned command 
it will convert the mesh with wrong dimensions, since all the units in 
OpenFOAM® are SI Units (International System of Units).  

There are different flags included with most of OpenFOAM® tools, for checking 
them use the flag -help after the command, e.g.: 

>fluentMeshToFoam –help 

The output gives an overview of available options of the tool and a short 
description on how to use it: 

Usage: fluentMeshToFoam [OPTIONS] <Fluent mesh file> 

options: 

  -2D <thickness>   use when converting a 2-D mesh (applied before scale) 

  -case <dir>       specify alternate case directory, default is the cwd 

  -fileHandler <handler> 

        override the fileHandler 

  -libs <(lib1 .. libN)> 

        pre-load libraries 

  -noFunctionObjects 

                    do not execute functionObjects 

  -scale <factor>   geometry scaling factor - default is 1 

  -writeSets        write cell zones and patches as sets 

  -writeZones       write cell zones as zones 
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  -srcDoc           display source code in browser 

  -doc              display application documentation in browser 

  -help             print the usage 

Using: OpenFOAM-10 (see https://openfoam.org) 

Build: 10 

The -scale flag is used for converting the mesh dimensions from other units 

to SI units, e.g. if the mesh was created in mm it will be converted to meter by 
using -scale 0.001 (which is not the case in this tutorial): 

>fluentMeshToFoam elbow.msh -scale 0.001 

Note: The mesh which is imported to OpenFOAM® should be a three-
dimensional mesh. For carrying out 2D (also 1D) simulations, a three-
dimensional mesh should be created with just one cell in the third dimension 
(for 1D, one cell in the second and one cell in the third direction). 

Note: If there are internal boundaries in the mesh, there is another tool, 
fluent3DMeshToFoam. Using this tool, the internal boundaries will be kept 
during conversion. 

1.4. Case structure 

Most of the cases in OpenFOAM® have the following basic case structure 
(directory tree): 

 

There are three main directories (0, constant, system) in each case folder: 

1.4.1. 0 directory 

The 0 directory includes the initial and boundary conditions for running the 
simulation. In each file in this folder, the initial conditions for one property can 
be set. The files are named after the property they are standing for, e.g. usually 

https://openfoam.org/
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p file includes pressure initial and boundary conditions. In the elbow example, 
there are only two files inside the 0 directory, p and U. p stands for pressure 
and U stands for velocity. Checking p: 

>nano  p 

Note: nano is the command line based text editor, which comes by default with 
Ubuntu. You can use any other text editor (also graphical ones) for opening and 
editing the files. 

Note: You can use ctrl+x for closing and exiting the nano. 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Website:  https://openfoam.org                  | 

|   \\  /    A nd           | Version:  12                                    | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    format      ascii; 

    class       volScalarField; 

    object      p; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

dimensions      [0 2 -2 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

    wall-4           

    { 

        type            zeroGradient; 

    } 

 

    velocity-inlet-5  

    { 

        type            zeroGradient; 

    } 

 

    velocity-inlet-6  

    { 

        type            zeroGradient; 

    } 

 

    pressure-outlet-7  

    { 

        type            fixedValue; 

        value           uniform 0; 

    } 

 

    wall-8           

    { 

        type            zeroGradient; 

    } 

 

    frontAndBackPlanes  

    { 

        type            empty; 

    } 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 
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In dimensions, the physical dimension according to SI base units of the 

quantity is defined, for example here it shows that the p dimension is (m/s)2. 

Note: In the dimension matrix the first number represents mass (kilogram), the 
second one the length (meter), the third one time (second), the fourth one the 
temperature (Kelvin), the fifth one the quantity (mole), the sixth one current 
(ampere) and the last one luminous intensity (candela). 

Note: As you can see the p unit is not the pressure unit (Pa). It is because in 
incompressible solvers in OpenFOAM® p is defined as pressure divided by 
density. 

The internalField sets the initial field of a specific quantity in the solution 

domain. There are two types: uniform and non-uniform. Uniform field assigns a 
single value to all cells, whereas non-uniform field specifies a unique value to 
each field element.  

The type of each of our boundaries as well as the value of this quantity on the 
boundaries is defined in the boundaryField. There are many different types 

of boundary conditions in OpenFOAM®, a few very common ones:   

- zeroGradient: Applies a zero gradient boundary type to this boundary 

(Neumann boundary condition).  

- fixedValue: Applies a fixed value to this boundary (Dirichlet boundary 

condition). 

- empty: It is for sides, which are vertical to the direction that is not going 

to be considered (e.g. in 2D simulations these boundaries are vertical to 
the third dimension). In this boundary type both sides vertical to one 
dimension should be selected together and named as one boundary. 

Note: If a fixedValue boundary condition with value equals 

$internalField is used, it is equal to using zeroGradient, except 

zeroGradient applies the boundary condition implicitly, but fixedValue 

with $internalField value applies the boundary condition explicitly. 

The U file has to be defined via three components (since velocity is a vector): 
first one stands for the x component, second one for the y component, and the 
third one for the z component of the velocity. For this case setup the z 
component is always zero because it is a 2D simulation and no calculations will 
be done in the z direction. The boundaries vertical to z direction have been 
already set to empty. 

1.4.2.  constant directory 

The constant directory usually consists of the mesh subdirectory and some 
files. In the sub-directory “polyMesh” the mesh data are stored (in this case the 
data for imported mesh). Among the files in the polyMesh directory, the 
boundary file is relevant for users and includes the mesh boundary data, e.g. 
name, type and the patch group which can be modified by the user for changing 
the boundary type or name for a created or imported mesh (for the sake of 
space, the dictionary headers will not be included in this scope anymore): 
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

6 

( 

    wall-4 

    { 

        type            wall; 

        inGroups        List<word> 1(wall) 

        nFaces          100; 

        startFace       1300; 

    } 

    velocity-inlet-5 

    { 

        type            patch; 

        nFaces          8; 

        startFace       1400; 

    } 

… 

    frontAndBackPlanes 

    { 

        type            empty; 

        inGroups        List<word> 1(empty); 

        nFaces          1836; 

        startFace       1454; 

    } 

) 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

Comparing the boundary names and types with the ones set in GAMBIT®, they 
should be the same.  

Note: However, in terms of boundary type, empty boundary condition does not 
exist in GAMBIT®. All the faces perpendicular to the direction, which is not going 
to be considered, are defined as a new boundary with type wall. After importing 
the mesh to OpenFOAM®, modify that boundary in the file constant/polyMesh/ 
boundary, and change its type from wall to empty, and change inGroups 

from wall to empty. In this case, after converting the mesh, the face 

frontAndBackPlanes needs to be modified for both hex-mesh and finer hex-

mesh. 

The files in the constant directory (usually) include material properties, 
simulation physics and chemistry, e.g. by opening the physicalProperties file, 
properties dimensions and the property value can be found and edited, e.g.: 

nu              [ 0 2 -1 0 0 0 0 ] 0.01; 

nu is the fluid kinematic viscosity, which is 0.01 m2/s for this example. 

1.4.3. system directory 

Solver and finite volume methods settings can be found and changed in this 
directory. There are three main files in this directory:  

- fvSchemes: The discretization scheme used for each term of the 
equations are set in this file (it will be discussed in more detail in the next 
tutorials).  

- fvSolution: Contains the settings to the coupling method of pressure 
and velocity, the numerical methods, which are used for solving different 
quantities, and the final tolerance for convergence of that quantity.  
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- controlDict: The time from where simulation starts (startFrom), the 

time when the simulation finishes (stopAt), the time step (deltaT), the 

data saving interval (writeInterval), the saved data file format 

(writeFormat), the saved file data precision (writePrecision), and 

also if changing the files during the run can affect the run or not 
(runTimeModifiable) are set in this file. 

Note: If the write format is ascii, then the simulation data which is written to 

the file can be opened and read using any text editor. If the format is binary, 

the data will be written in binary style and is not readable by text editors. The 
advantage of binary over ascii is the smaller file size, and consequently faster 
conversion and writing to disk, for big simulations. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

application     icoFoam; 

 

startFrom       latestTime; 

 

startTime       0; 

 

stopAt          endTime; 

 

endTime         75; 

 

deltaT          0.05; 

 

writeControl    timeStep; 

 

writeInterval   20; 

 

purgeWrite      0; 

 

writeFormat     ascii; 

 

writePrecision  6; 

 

writeCompression off; 

 

timeFormat      general; 

 

timePrecision   6; 

 

runTimeModifiable true; 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

Note: This simulation continues from the last time step data, which is saved 
(latestTime). If there was no saved data, it will start from start time 

(startTime), which is zero in this case.  

Note: Our first modification in the simulation is changing the endTime from the 

original value of 10s to 75s, for running the simulation up to 75s. 
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2. Running simulation 

The simulation can be run by typing the solver’s name and executing it: 

>icoFoam 

Note: For running the simulation, the solver command (e.g. icoFoam) should 
be executed inside the copy of the tutorial main folder. For example: The 
command should be executed in the elbow folder, if it was run at some 
subfolders or somewhere else, the simulation will fail. 

3. Post-processing 

3.1. Exporting simulation data 

The data files created by OpenFOAM® should be exported (converted) by the 
appropriate tools, to the post processing tools data format. For ParaView: 

>foamToVTK 

where VTK is the ParaView data format. This command should be also 
executed in the case main directory, e.g. elbow. Here, ParaView is used as the 
post-processing tool, for running it 

>paraview & 

Note: Another option to open the OpenFOAM® simulation results with ParaView 
without converting them to VTK; Create an empty text file in the main case 
directory, name it <someName>.foam (e.g. foam.foam), and execute the 
following command. This method is good for fast evaluation of the data in the 
middle of the simulation or with a decomposed case in parallel simulations: 

>paraview foam.foam & 

Note: By putting & at the end of command, the command line will remain active 
and ready for further inputs while that program is running. 

3.2. Examining different meshes 

Do the same for the other two meshes. Only the mesh for the first simulation is 
included in the elbow example of OpenFOAM®. For the other two simulations, 
the mesh should be provided by the user. For finding the tutorials on how to 
create the geometry and the mesh, search the internet for “GAMBIT® elbow 
mesh 2D”. The dimensions and the mesh info are provided in that tutorial. Try 
to create it by using GAMBIT® (or any other similar mesh creation tools). When 
you are done, you have to convert it into a 3D mesh with one cell in the z-
direction.  

The comparisons of all three case results and charts are shown below. 
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The Hex Fine mesh 

 

Pressure and velocity for different meshes at t=75 s, along the arc shown 
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The comparison plots are along the line between points A (54 0 0) at the small 
tube entrance and B (60 60 0) at the large tube exit part (length units are in 
meter) for Tri-mesh, for other two meshes created using GAMBIT® the points 
are A (22 -33 0) and B (27 30 0).  

Mesh Pressure Velocity 

Tri 

  

Hex 

  

Hex 

Fine 

  

 

  

Comparison of different mesh type results at t = 75 s 
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Note: For extracting data over a line, the line should be defined in ParaView 
using “Plot Over Line”, then the data over this line can be exported by choosing 
Save Data from File menu in ParaView. 

 


