

OpenFOAM® Basic Training

Tutorial One

Tutorial One

Basic Case Setup

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial One

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial One

Background

1. What is CFD?

Computational Fluid Dynamics (CFD) is a method used to analyze systems
involving fluid flow, heat transfer, and related phenomena such as heat and
mass transfer. This analysis is performed through computer-based simulations,
which help in understanding how fluids behave under different conditions. CFD
is a powerful tool used in a variety of fields, including aerospace, automotive,
chemical engineering, environmental studies, and biomedical applications.

The goal of CFD development is to create tools that are as reliable as other
computer-aided engineering (CAE) methods like stress analysis. However,
CFD is trickier due to the complex nature of fluid flow, which involves
turbulence, variable properties, and nonlinear behavior. The mathematical
foundation of CFD is based on the Navier-Stokes and continuity equations,
which describe the motion of fluid substances and are derived from
fundamental conservation laws (mass and momentum). These equations are
partial differential equations that represent how fluid velocity, pressure, and
density change over time and space.

While CFD offers many advantages, such as cost reduction in experimental
setups and the ability to simulate complex scenarios, it is not fully automated.
A good understanding of the underlying physics is necessary to set up a reliable
simulation and interpret results correctly. Additionally, even with advanced
computational resources, real-time simulations are still challenging due to the
intensive calculations required. CFD is typically used alongside experimental
methods like wind tunnel testing to validate and improve results.

CFD software comes in two main types:

• Open-source and free (e.g., OpenFOAM®): Offers flexibility for
modification and customization, making it popular in academic and
research environments.

• Commercial and closed source (e.g., ANSYS Fluent, COMSOL):
Provides user-friendly interfaces, technical support, and advanced
features, making it suitable for industrial applications.

In this guide, the focus will be on OpenFOAM®, an open-source CFD software
written in C++. It allows users to access, modify, and even develop custom
solvers to meet specific research or industrial needs. OpenFOAM® is widely
used due to its flexibility and extensive documentation, although it requires a
good understanding of both CFD principles and programming basics.

For beginners, it's helpful to think of CFD as a "virtual wind tunnel" where you
can simulate fluid flow without physically building models or conducting real-
world experiments. This makes it a cost-effective and versatile tool, especially
during the design and testing phases of engineering projects.

CFD is not only limited to air and water flow simulations, and it is extensively
used in modeling different sophisticated processes such as: weather patterns
(meteorology), blood flow in arteries (biomedical engineering), combustion

OpenFOAM® Basic Training

Tutorial One

processes in engines (mechanical engineering), pollution dispersion in the
atmosphere (environmental engineering) and many more!

2. Workflow of CFD

A typical CFD workflow consists of three main stages:

2.1 Pre-processing

This stage involves setting up the simulation, including:

• Geometry Definition: Creating the computational domain that
represents the physical system. This can be done using CAD
(Computer-Aided Design) software or built-in geometry tools in CFD
software. The accuracy of geometry affects how well simulation
represents the real-world scenario. Think of geometry as the "shape" or
"structure" through which the fluid will flow. Beginners can start with
simple geometries like pipes, ducts, or channels before progressing to
complex designs.

• Mesh Generation: Dividing the domain into smaller, non-overlapping
elements (cells) to form a grid. The quality and density of the mesh
significantly affect the accuracy of the simulation. Finer meshes are used
in regions with high gradients (e.g., near walls, sharp edges, or around
obstacles), while coarser meshes suffice for uniform flow areas. Meshes
can be structured (regular grids) or unstructured (irregular shapes),
depending on the complexity of the geometry. A structured mesh is
easier to generate and solve but less flexible for complex geometries,
while an unstructured mesh can fit intricate shapes better. Imagine the
mesh as a net spread over your geometry. The tighter the net (finer
mesh), the more detailed your simulation results will be. However, this
also increases computational effort, so there's a balance to be found.

• Model Selection: Choosing physical models to represent phenomena
such as turbulence (e.g., k-epsilon, k-omega models), heat transfer, and
chemical reactions. The selection depends on the flow regime (laminar
or turbulent) and the specific application.

• Fluid Properties: Defining parameters like density, viscosity, thermal
conductivity, and specific heat capacity. These properties vary with
temperature, pressure, or composition in complex simulations.
Incompressible flow assumes constant density, while compressible flow
accounts for changes in density due to pressure and temperature
variations.

• Boundary and Initial Conditions: Setting conditions at the domain's
boundaries (e.g., velocity at an inlet, pressure at an outlet, wall
conditions) and initial conditions for transient simulations. Proper
boundary conditions are crucial for accurate results.

The solution variables (e.g., velocity, pressure, temperature) are calculated at
specific points within each cell. The mesh's resolution influences the

OpenFOAM® Basic Training

Tutorial One

simulation's accuracy and computational cost. A mesh independence study is
often performed to ensure that the results are not sensitive to the mesh size.
This involves running simulations with progressively finer meshes until the
changes in results become negligible.

Tip for beginners: Start with a coarser mesh to get quick results, then gradually
refine the mesh to see how it affects accuracy. This helps you learn how
sensitive your simulation is to mesh density.

2.2 Solver

In this stage, numerical methods are applied to solve the governing equations
of fluid flow, including:

• Conservation Equations: Mass, momentum, and energy conservation
laws are integrated over each control volume. These equations are often
coupled, meaning changes in one variable affect others. For example,
changes in velocity can influence pressure and vice versa.

• Discretization: The continuous equations are converted into algebraic
forms using methods like the finite volume method (FVM), which ensures
conservation principles are maintained within each cell. Other methods
include the finite difference method (FDM) and finite element method
(FEM), though FVM is most common in CFD. Discretization involves
approximating derivatives with algebraic expressions, allowing the
equations to be solved numerically.

• Solution Techniques: The resulting algebraic equations are solved
iteratively until convergence is achieved. Common iterative solvers
include the SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) and PISO (Pressure-Implicit with Splitting of Operators)
algorithms. Convergence is determined when changes in the solution
between iterations fall below a predefined threshold.

The finite volume method is widely used because it ensures the conservation
of physical quantities within each control volume, making it both accurate and
robust. It is also flexible for handling complex geometries and boundary
conditions.

Think of the solver as the "engine" of CFD—it's where all the heavy lifting
happens to calculate how the fluid moves. Understanding how the solver works
helps in troubleshooting and optimizing simulations.

2.3 Post-processing

This stage involves analyzing and visualizing the simulation results. Key tasks
include:

• Visualization: Using cutting planes, contour plots, vector fields,
streamlines, and line plots to represent flow variables such as velocity,
pressure, and temperature distributions. Visualization helps in identifying
flow patterns, vortices, and areas of interest like high-pressure zones.

OpenFOAM® Basic Training

Tutorial One

• Data Analysis: Evaluating physical quantities like forces (drag, lift), heat
transfer rates, pressure drops, and flow rates. Quantitative analysis
helps validate the simulation results against experimental data or
theoretical predictions.

• Validation: Comparing simulation results with experimental data or
theoretical models to ensure accuracy. Sensitivity analysis may be
conducted to understand the influence of different parameters.

Popular post-processing tools include commercial software like TecPlot and
Ensight, as well as open-source tools such as ParaView and SALOME. These
tools allow for advanced visualization techniques, including 3D rendering and
time-dependent animations, making it easier to interpret complex flow
behaviors.

Tip: Post-processing is not just about making pretty pictures. It helps you
understand the flow physics and detect any errors or inconsistencies in your
simulation.

3. icoFoam Solver

icoFoam is an OpenFOAM® solver suitable for analyzing incompressible,
laminar flow of Newtonian fluids. It is based on the PISO algorithm (pressure-
implicit split-operator), which is essentially a pressure-velocity iterative
procedure for transient problems. In each iterative step, PISO solves the
momentum equation using one predictor step, with two further corrector steps
for both velocity and pressure.

OpenFOAM® Basic Training

Tutorial One

icoFoam – elbow

Tutorial outline

Using icoFoam solver, simulate 75 s of flow in an elbow for the following
GAMBIT® meshes:

• Tri-mesh (comes with OpenFOAM® tutorial)

• Hex-mesh coarse (check GAMBIT® “elbow 2D” tutorial)

• 2 times finer hex-mesh (refined previous step mesh)

Objectives

• Basic case setup in OpenFOAM®

• Setting up initial values of p and U

• Ensuring proper boundary definitions (imported boundaries from
GAMBIT®, additional surfaces during conversion and boundaries definition in
OpenFOAM®)

Data processing

Import your simulation to ParaView, extract data to make two diagrams (using
spreadsheet calculators) of pressure and velocity magnitude along a line
between two tubes, do the same for all three simulations.

OpenFOAM® Basic Training

Tutorial One

1. Pre-processing

1.1. Setting system environment

Make sure your system environment is set correctly under the chosen version
of OpenFOAM® (v12), check Appendix B Part A.

1.2. Copying tutorial

Open a terminal and copy the elbow tutorial from the following path to your
working directory (see Appendix A for running a terminal in Linux):

$FOAM_TUTORIALS/legacy/incompressible/icoFoam/elbow

Note: The ‘$FOAM_TUTORIALS’ allows the tutorial to be extracted from the
tutorial folder in the installation directory of OpenFOAM® under the current
system environment.

Note: The tutorial can also be simply copied from the mentioned directory using
your file explorer.

1.3. Converting mesh

The mesh, which is produced by GAMBIT®, is not directly compatible with
OpenFOAM®. First, the mesh needs to be converted to an OpenFOAM® mesh,
using the following tool:

>fluentMeshToFoam elbow.msh

Note: the ‘>’ sign is not part of the command. It is only used to show that the
command should be typed inside a terminal.

If the mesh was created in mm and is converted using the mentioned command
it will convert the mesh with wrong dimensions, since all the units in
OpenFOAM® are SI Units (International System of Units).

There are different flags included with most of OpenFOAM® tools, for checking
them use the flag -help after the command, e.g.:

>fluentMeshToFoam –help

The output gives an overview of available options of the tool and a short
description on how to use it:

Usage: fluentMeshToFoam [OPTIONS] <Fluent mesh file>

options:

 -2D <thickness> use when converting a 2-D mesh (applied before scale)

 -case <dir> specify alternate case directory, default is the cwd

 -fileHandler <handler>

 override the fileHandler

 -libs <(lib1 .. libN)>

 pre-load libraries

 -noFunctionObjects

 do not execute functionObjects

 -scale <factor> geometry scaling factor - default is 1

 -writeSets write cell zones and patches as sets

 -writeZones write cell zones as zones

OpenFOAM® Basic Training

Tutorial One

 -srcDoc display source code in browser

 -doc display application documentation in browser

 -help print the usage

Using: OpenFOAM-10 (see https://openfoam.org)

Build: 10

The -scale flag is used for converting the mesh dimensions from other units

to SI units, e.g. if the mesh was created in mm it will be converted to meter by
using -scale 0.001 (which is not the case in this tutorial):

>fluentMeshToFoam elbow.msh -scale 0.001

Note: The mesh which is imported to OpenFOAM® should be a three-
dimensional mesh. For carrying out 2D (also 1D) simulations, a three-
dimensional mesh should be created with just one cell in the third dimension
(for 1D, one cell in the second and one cell in the third direction).

Note: If there are internal boundaries in the mesh, there is another tool,
fluent3DMeshToFoam. Using this tool, the internal boundaries will be kept
during conversion.

1.4. Case structure

Most of the cases in OpenFOAM® have the following basic case structure
(directory tree):

There are three main directories (0, constant, system) in each case folder:

1.4.1. 0 directory

The 0 directory includes the initial and boundary conditions for running the
simulation. In each file in this folder, the initial conditions for one property can
be set. The files are named after the property they are standing for, e.g. usually

https://openfoam.org/

OpenFOAM® Basic Training

Tutorial One

p file includes pressure initial and boundary conditions. In the elbow example,
there are only two files inside the 0 directory, p and U. p stands for pressure
and U stands for velocity. Checking p:

>nano p

Note: nano is the command line based text editor, which comes by default with
Ubuntu. You can use any other text editor (also graphical ones) for opening and
editing the files.

Note: You can use ctrl+x for closing and exiting the nano.

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Website: https://openfoam.org |

| \\ / A nd | Version: 12 |

| \\/ M anipulation | |

---/

FoamFile

{

 format ascii;

 class volScalarField;

 object p;

}

// *

* * * * * *//

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

 wall-4

 {

 type zeroGradient;

 }

 velocity-inlet-5

 {

 type zeroGradient;

 }

 velocity-inlet-6

 {

 type zeroGradient;

 }

 pressure-outlet-7

 {

 type fixedValue;

 value uniform 0;

 }

 wall-8

 {

 type zeroGradient;

 }

 frontAndBackPlanes

 {

 type empty;

 }

}

// *

* * * * * *//

OpenFOAM® Basic Training

Tutorial One

In dimensions, the physical dimension according to SI base units of the

quantity is defined, for example here it shows that the p dimension is (m/s)2.

Note: In the dimension matrix the first number represents mass (kilogram), the
second one the length (meter), the third one time (second), the fourth one the
temperature (Kelvin), the fifth one the quantity (mole), the sixth one current
(ampere) and the last one luminous intensity (candela).

Note: As you can see the p unit is not the pressure unit (Pa). It is because in
incompressible solvers in OpenFOAM® p is defined as pressure divided by
density.

The internalField sets the initial field of a specific quantity in the solution

domain. There are two types: uniform and non-uniform. Uniform field assigns a
single value to all cells, whereas non-uniform field specifies a unique value to
each field element.

The type of each of our boundaries as well as the value of this quantity on the
boundaries is defined in the boundaryField. There are many different types

of boundary conditions in OpenFOAM®, a few very common ones:

- zeroGradient: Applies a zero gradient boundary type to this boundary

(Neumann boundary condition).

- fixedValue: Applies a fixed value to this boundary (Dirichlet boundary

condition).

- empty: It is for sides, which are vertical to the direction that is not going

to be considered (e.g. in 2D simulations these boundaries are vertical to
the third dimension). In this boundary type both sides vertical to one
dimension should be selected together and named as one boundary.

Note: If a fixedValue boundary condition with value equals

$internalField is used, it is equal to using zeroGradient, except

zeroGradient applies the boundary condition implicitly, but fixedValue

with $internalField value applies the boundary condition explicitly.

The U file has to be defined via three components (since velocity is a vector):
first one stands for the x component, second one for the y component, and the
third one for the z component of the velocity. For this case setup the z
component is always zero because it is a 2D simulation and no calculations will
be done in the z direction. The boundaries vertical to z direction have been
already set to empty.

1.4.2. constant directory

The constant directory usually consists of the mesh subdirectory and some
files. In the sub-directory “polyMesh” the mesh data are stored (in this case the
data for imported mesh). Among the files in the polyMesh directory, the
boundary file is relevant for users and includes the mesh boundary data, e.g.
name, type and the patch group which can be modified by the user for changing
the boundary type or name for a created or imported mesh (for the sake of
space, the dictionary headers will not be included in this scope anymore):

OpenFOAM® Basic Training

Tutorial One

// *

* * * * * *//

6

(

 wall-4

 {

 type wall;

 inGroups List<word> 1(wall)

 nFaces 100;

 startFace 1300;

 }

 velocity-inlet-5

 {

 type patch;

 nFaces 8;

 startFace 1400;

 }

…

 frontAndBackPlanes

 {

 type empty;

 inGroups List<word> 1(empty);

 nFaces 1836;

 startFace 1454;

 }

)

// *

* * * * * *//

Comparing the boundary names and types with the ones set in GAMBIT®, they
should be the same.

Note: However, in terms of boundary type, empty boundary condition does not
exist in GAMBIT®. All the faces perpendicular to the direction, which is not going
to be considered, are defined as a new boundary with type wall. After importing
the mesh to OpenFOAM®, modify that boundary in the file constant/polyMesh/
boundary, and change its type from wall to empty, and change inGroups

from wall to empty. In this case, after converting the mesh, the face

frontAndBackPlanes needs to be modified for both hex-mesh and finer hex-

mesh.

The files in the constant directory (usually) include material properties,
simulation physics and chemistry, e.g. by opening the physicalProperties file,
properties dimensions and the property value can be found and edited, e.g.:

nu [0 2 -1 0 0 0 0] 0.01;

nu is the fluid kinematic viscosity, which is 0.01 m2/s for this example.

1.4.3. system directory

Solver and finite volume methods settings can be found and changed in this
directory. There are three main files in this directory:

- fvSchemes: The discretization scheme used for each term of the
equations are set in this file (it will be discussed in more detail in the next
tutorials).

- fvSolution: Contains the settings to the coupling method of pressure
and velocity, the numerical methods, which are used for solving different
quantities, and the final tolerance for convergence of that quantity.

OpenFOAM® Basic Training

Tutorial One

- controlDict: The time from where simulation starts (startFrom), the

time when the simulation finishes (stopAt), the time step (deltaT), the

data saving interval (writeInterval), the saved data file format

(writeFormat), the saved file data precision (writePrecision), and

also if changing the files during the run can affect the run or not
(runTimeModifiable) are set in this file.

Note: If the write format is ascii, then the simulation data which is written to

the file can be opened and read using any text editor. If the format is binary,

the data will be written in binary style and is not readable by text editors. The
advantage of binary over ascii is the smaller file size, and consequently faster
conversion and writing to disk, for big simulations.

// *

* * * * * *//

application icoFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 75;

deltaT 0.05;

writeControl timeStep;

writeInterval 20;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

// *

* * * * * *//

Note: This simulation continues from the last time step data, which is saved
(latestTime). If there was no saved data, it will start from start time

(startTime), which is zero in this case.

Note: Our first modification in the simulation is changing the endTime from the

original value of 10s to 75s, for running the simulation up to 75s.

OpenFOAM® Basic Training

Tutorial One

2. Running simulation

The simulation can be run by typing the solver’s name and executing it:

>icoFoam

Note: For running the simulation, the solver command (e.g. icoFoam) should
be executed inside the copy of the tutorial main folder. For example: The
command should be executed in the elbow folder, if it was run at some
subfolders or somewhere else, the simulation will fail.

3. Post-processing

3.1. Exporting simulation data

The data files created by OpenFOAM® should be exported (converted) by the
appropriate tools, to the post processing tools data format. For ParaView:

>foamToVTK

where VTK is the ParaView data format. This command should be also
executed in the case main directory, e.g. elbow. Here, ParaView is used as the
post-processing tool, for running it

>paraview &

Note: Another option to open the OpenFOAM® simulation results with ParaView
without converting them to VTK; Create an empty text file in the main case
directory, name it <someName>.foam (e.g. foam.foam), and execute the
following command. This method is good for fast evaluation of the data in the
middle of the simulation or with a decomposed case in parallel simulations:

>paraview foam.foam &

Note: By putting & at the end of command, the command line will remain active
and ready for further inputs while that program is running.

3.2. Examining different meshes

Do the same for the other two meshes. Only the mesh for the first simulation is
included in the elbow example of OpenFOAM®. For the other two simulations,
the mesh should be provided by the user. For finding the tutorials on how to
create the geometry and the mesh, search the internet for “GAMBIT® elbow
mesh 2D”. The dimensions and the mesh info are provided in that tutorial. Try
to create it by using GAMBIT® (or any other similar mesh creation tools). When
you are done, you have to convert it into a 3D mesh with one cell in the z-
direction.

The comparisons of all three case results and charts are shown below.

OpenFOAM® Basic Training

Tutorial One

The Hex Fine mesh

Pressure and velocity for different meshes at t=75 s, along the arc shown

OpenFOAM® Basic Training

Tutorial One

The comparison plots are along the line between points A (54 0 0) at the small
tube entrance and B (60 60 0) at the large tube exit part (length units are in
meter) for Tri-mesh, for other two meshes created using GAMBIT® the points
are A (22 -33 0) and B (27 30 0).

Mesh Pressure Velocity

Tri

Hex

Hex

Fine

Comparison of different mesh type results at t = 75 s

OpenFOAM® Basic Training

Tutorial One

Note: For extracting data over a line, the line should be defined in ParaView
using “Plot Over Line”, then the data over this line can be exported by choosing
Save Data from File menu in ParaView.

