
Tutorial One

Basic Case Setup

6th edition, April 2023

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial One

Editorial board:

 Bahram Haddadi

 Christian Jordan

 Michael Harasek

Contributors:

 Bahram Haddadi

 Clemens Gößnitzer

 Jozsef Nagy

 Vikram Natarajan

 Sylvia Zibuschka

 Yitong Chen

Compatibility:

 OpenFOAM® v10

Cover picture from:

 Bahram Haddadi

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

 to Share — to copy, distribute and transmit the work

 to Remix — to adapt the work
Under the following conditions:

 Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

 Noncommercial — you may not use this work for commercial purposes.

 Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

 Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

 Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

 Other Rights — In no way are any of the following rights affected by the license:

 Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

 The author's moral rights;

 Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

 Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-02-2

Publisher: chemical-engineering.at

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial One

Background

1. What is CFD?

Computational fluid dynamics or CFD is the analysis of systems involving fluid
flow, heat transfer and associated phenomena such as chemical reactions by
means of computer-based simulation. The technique is very powerful and its
application spans a wide range of industrial and non-industrial areas.

The ultimate aim of developments in the CFD field is to provide a capability
comparable to other CAE (computer-aided engineering) tools such as stress
analysis codes. The main reason why CFD has lagged behind is the
tremendous complexity of the underlying behavior of fluid flows.

Although CFD has many advantages, it is not yet at the level where it can be
blindly used without a working knowledge of the physics involved, and despite
the increasing speed of computation available, CFD has not yet matured to a
level where it can be used for real time computation. Numerical analyses
require significant time to be set up and performed. CFD is still an aid to other
analysis and experimental tools like wind tunnel testing, and is used in
conjunction with them. So be careful!

The two most common types of CFD codes are:

 open and free

 closed source and commercial

We will be focusing on OpenFOAM®, which is a free, open source CFD code,
written in C++. In addition, its source code is accessible and modifiable by its
users. Therefore, you can even develop your own OpenFOAM® solver if you
wish to!

2. Workflow of CFD

A CFD procedure is structured around the numerical algorithms that can tackle
fluid flow problems, and the workflow mostly contains three main elements:

2.1. Pre-processing

 Definition of the geometry of the region of interest: the computational
domain

 Grid generation – the sub-division of the flow region into a number of
smaller, non-overlapping sub-domains: a grid (or mesh) of cells (or
control volumes or elements)

 Selection of suitable models for the interesting physical and chemical
phenomena

 Definition of fluid properties

 Specification of the appropriate chemical and physical boundary
conditions at cells which coincide with or touch the domain boundary

OpenFOAM® Basic Training

Tutorial One

The solution to a flow problem (velocity, pressure, temperature etc.) is defined
at nodes or cell centers inside each cell. The accuracy of a CFD solution
depends heavily on the number of cells in the grid. In general, the larger the
number of cells, the better the solution accuracy. Optimal meshes are often
non-uniform: finer in areas where large variations occur from point to point and
coarser in regions with relatively little change.

2.2. Solver

There are at least four distinct streams of numerical solution techniques: finite
difference, finite element, spectral methods and finite volume. We will only
focus on the finite volume method, as it is central to the most well established
CFD solvers. In outline, the finite volume method consists of the following steps:

 Integration of the conservation of mass, energy and momentum
equations over all the control volumes in the domain

 Discretization – conversion of the resulting integral equations into a
system of algebraic equations

 Solution of the algebraic equations by an iterative method

The first step, the control volume integration, makes the finite volume method
different from all other CFD techniques. It makes sure that a general flow
variable, e.g. momentum or enthalpy, is conserved in each finite size cell. This
clear relationship between the numerical algorithm and the underlying
conservation principle makes finite volume method popular and much simpler
to understand.

2.3. Post-processing

This is where you look at the results and visualize them so that you can see
what happens in your model. Typical elements of post-processing are:

 Definition of suitable cutting planes for visualization

 Contour plots of properties/flow variables

 Vector plots

 Streamlines

 Line plots

 Balances

There are several post-processing tools; fluent built-in post-processing tool,
Ensight and TecPlot are some well-known commercial examples. There are
also some open source tools such as Paraview and SALOME.

3. icoFoam solver

icoFoam is an OpenFOAM® solver suitable for analyzing incompressible,
laminar flow of Newtonian fluids. It is based on the PISO algorithm (pressure-
implicit split-operator), which is essentially a pressure-velocity iterative

OpenFOAM® Basic Training

Tutorial One

procedure for transient problems. In each iterative step, PISO solves the
momentum equation using one predictor step, with two further corrector steps
for both velocity and pressure.

OpenFOAM® Basic Training

Tutorial One

icoFoam – elbow

Tutorial outline

Using icoFoam solver, simulate 75 s of flow in an elbow for the following
GAMBIT® meshes:

• Tri-mesh (comes with OpenFOAM® tutorial)

• Hex-mesh coarse (check GAMBIT® “elbow 2D” tutorial)

• 2 times finer hex-mesh (refined previous step mesh)

Objectives

• Basic case setup in OpenFOAM®

• Setting up initial values of p and U

• Ensuring proper boundary definitions (imported boundaries from
GAMBIT®, additional surfaces during conversion and boundaries definition in
OpenFOAM®)

Data processing

Import your simulation to ParaView, extract data to make two diagrams (using
spreadsheet calculators) of pressure and velocity magnitude along a line
between two tubes, do the same for all three simulations.

OpenFOAM® Basic Training

Tutorial One

1. Pre-processing

1.1. Setting system environment

Make sure your system environment is set correctly under the chosen version
of OpenFOAM® (v10), check Appendix B Part A.

1.2. Copying tutorial

Open a terminal and copy the elbow tutorial from the following path to your
working directory (see Appendix A for running a terminal in Linux):

$FOAM_TUTORIALS/incompressible/icoFoam/elbow

Note: The ‘$’ sign allows the tutorial to be extracted from the installation
directory of OpenFOAM® under the current system environment.

1.3. Converting mesh

The mesh, which is produced by GAMBIT®, is not directly compatible with
OpenFOAM®. First, the mesh needs to be converted to an OpenFOAM® mesh,
using the following tool:

>fluentMeshToFoam elbow.msh

Note: the ‘>’ sign is not part of the command. It is only used to show that the
command should be typed inside a terminal.

If the mesh was created in mm and is converted using the mentioned command
it will convert the mesh with wrong dimensions, since all the units in
OpenFOAM® are SI Units (International System of Units). There are different
flags included with most of OpenFOAM® tools, for checking them use the flag

-help after the command, e.g.:

>fluentMeshToFoam –help

The output gives an overview of available options of the tool and a short
description on how to use it:

Usage: fluentMeshToFoam [OPTIONS] <Fluent mesh file>

options:

 -2D <thickness> use when converting a 2-D mesh (applied before scale)

 -case <dir> specify alternate case directory, default is the cwd

 -fileHandler <handler>

 override the fileHandler

 -libs <(lib1 .. libN)>

 pre-load libraries

 -noFunctionObjects

 do not execute functionObjects

 -scale <factor> geometry scaling factor - default is 1

 -writeSets write cell zones and patches as sets

 -writeZones write cell zones as zones

 -srcDoc display source code in browser

 -doc display application documentation in browser

 -help print the usage

Using: OpenFOAM-10 (see https://openfoam.org)

Build: 10

https://openfoam.org/

OpenFOAM® Basic Training

Tutorial One

The -scale flag is used for converting the mesh dimensions from other units

to SI units, e.g. if the mesh was created in mm it will be converted to meter by

using -scale 0.001 and if the flag is omitted, uses 1:

>fluentMeshToFoam elbow.msh -scale 1.0

Note: The mesh which is imported to OpenFOAM® should be a three
dimensional mesh. For carrying out 2D (also 1D) simulations, a three-
dimensional mesh should be created with just one cell in the third dimension
(for 1D, one cell in the second and one cell in the third direction).

Note: If there are internal boundaries in the mesh, there is another tool,
fluent3DMeshToFoam. Using this tool, the internal boundaries will be kept
during conversion.

1.4. Case structure

Most of the cases in OpenFOAM® have the following basic case structure
(directory tree):

There are three main directories (0, constant, system) in each case folder:

OpenFOAM® Basic Training

Tutorial One

1.4.1. 0 directory

The 0 directory includes the initial conditions for running the simulation. In each
file in this folder, the initial conditions for one property can be set. The files are
named after the property they are standing for, e.g. usually T file includes
temperature initial conditions. In the elbow example, there are only two files
inside the 0 directory, p and U. p stands for pressure and U stands for velocity.
Checking p:

>nano p

It will be like this:

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Website: https://openfoam.org |

| \\ / A nd | Version: 10 |

| \\/ M anipulation | |

---/

FoamFile

{

 format ascii;

 class volScalarField;

 object p;

}

// *

* * * * * *//

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

 wall-4

 {

 type zeroGradient;

 }

 velocity-inlet-5

 {

 type zeroGradient;

 }

 velocity-inlet-6

 {

 type zeroGradient;

 }

 pressure-outlet-7

 {

 type fixedValue;

 value uniform 0;

 }

 wall-8

 {

 type zeroGradient;

 }

 frontAndBackPlanes

 {

 type empty;

 }

}

OpenFOAM® Basic Training

Tutorial One

// *

* * * * * *//

In dimensions, the physical dimension according to SI base units of the

quantity is defined, for example here it shows that the p dimension is (m/s)2.

Note: As you can see the p unit is not the pressure unit (Pa). It is due to the fact
that in incompressible solvers in OpenFOAM® p is defined as pressure divided
by density.

Note: In the dimension matrix the first number represents mass (kilogram), the
second one the length (meter), the third one time (second), the forth one the
temperature (Kelvin), the fifth one the quantity (mole), the sixth one current
(ampere) and the last one luminous intensity (candela).

The internalField sets the initial field of a specific quantity in the solution

domain. There are two types: uniform and non-uniform. Uniform field assigns a
single value to all elements, whereas non-uniform field specifies a unique value
to each field element.

The type of each of our boundaries as well as the value of this quantity on the

boundaries is defined in the boundaryField. There are different types of

boundary conditions in OpenFOAM®:

- zeroGradient: Applies a zero gradient boundary type to this boundary

(Neumann boundary condition).

- fixedValue: Applies a fixed value to this boundary (Dirichlet boundary

condition).

- empty: It is for sides, which are vertical to the direction that is not going

to be considered (e.g. in 2D simulations these boundaries are vertical to
the third dimension). In this boundary type both of the sides vertical to
one dimension should be selected together and named as one
boundary.

Note: If a fixedValue boundary condition with value equals

$internalField is used, it is equal to using zeroGradient, except

zeroGradient applies the boundary condition implicitly, but fixedValue

with $internalField value applies the boundary condition explicitly.

The U file has to be defined via three components (since velocity is a vector):
first one stands for the x component, second one for the y component, and the
third one for the z component. For this case setup the z component is always
zero because it is a 2D simulation and no calculations will be done in the z
direction. The boundaries vertical to z direction have been already set to empty.

1.4.2. constant directory

The constant directory usually consists of a subdirectory and some files. The
files (usually) include material properties, simulation physics and chemistry. In
the directory “polyMesh” the mesh data are stored (in this case the data for
converted mesh). The boundary file in this polyMesh directory includes the
mesh boundary data, e.g. type, the patch group, number of faces on this
boundary and also starting face number (unique face IDs) for this boundary (for

OpenFOAM® Basic Training

Tutorial One

the sake of space, the dictionary headers will not be included in this scope any
more):

// *

* * * * * *//

6

(

 wall-4

 {

 type wall;

 inGroups List<word> 1(wall)

 nFaces 100;

 startFace 1300;

 }

 velocity-inlet-5

 {

 type patch;

 nFaces 8;

 startFace 1400;

 }

…

 frontAndBackPlanes

 {

 type empty;

 inGroups List<word> 1(empty);

 nFaces 1836;

 startFace 1454;

 }

)

// *

* * * * * *//

Comparing the boundary names with the ones set in GAMBIT®, they should be
the same. Starting cell number and number of each face cells can also be
checked here.

Note: However, in terms of boundary type, empty boundary condition does not
exist in GAMBIT®. All the faces perpendicular to the direction, which is not going
to be considered, are defined as a new boundary with type wall. After importing
the mesh to OpenFOAM®, modify that boundary in the file constant/polyMesh/

boundary, and change its type from wall to empty, and change inGroups

from wall to empty. In this case, after converting the mesh, the face

frontAndBackPlanes needs to be modified for both hex-mesh and finer hex-

mesh.

By opening the physicalProperties file, properties dimensions and the property
value can be found and edited, e.g.:

nu [0 2 -1 0 0 0 0] 0.01;

nu is the fluid kinematic viscosity, which is 0.01 m2/s for this example.

1.4.3. system directory

Solver and finite volume methods settings can be found and changed in this
directory. There are three main files in this directory:

- fvSchemes: The discretization scheme used for each term of the
equations are set in this file.

OpenFOAM® Basic Training

Tutorial One

- fvSolution: Contains the settings to the coupling method of pressure
and velocity, the numerical methods, which are used for solving different
quantities, and also the final tolerance for convergence of that quantity.

- controlDict: The time from where simulation starts (startFrom), the

time when the simulation finishes (stopAt), the time step (deltaT), the

data saving interval (writeInterval), the saved data file format

(writeFormat), the saved file data precision (writePrecision), and

also if changing the files during the run can affect the run or not

(runTimeModifiable) are set in this file.

Note: If the write format is ascii, then the simulation data which is written to

the file can be opened and read using any text editor. If the format is binary,

the data will be written in binary style and is not readable by text editors. The
advantage of binary over ascii is the smaller file size, and consequently faster
conversion and writing to disk, for big simulations.

// *

* * * * * *//

application icoFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 75;

deltaT 0.05;

writeControl timeStep;

writeInterval 20;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

// *

* * * * * *//

Note: This simulation continues from the last time step data, which is saved

(latestTime). If there was no saved data, it will start from start time

(startTime), which is zero in this case.

OpenFOAM® Basic Training

Tutorial One

2. Running simulation

The simulation can be run by typing the solver’s name and executing it:

>icoFoam

Note: For running the simulation, the solver command (e.g. icoFoam) should
be executed inside the copy of the tutorial main folder. For example: The
command should be executed in the elbow folder, if it was run at some
subfolders or somewhere else, the simulation will fail.

3. Post-processing

3.1. Exporting simulation data

The data files created by OpenFOAM® should be exported (converted) by the
appropriate tools, to the post processing tools data format. For ParaView:

>foamToVTK

where VTK is the ParaView data format. This command should be also
executed in the case main directory, e.g. elbow. Here, ParaView is used as the
post-processing tool, for running it

>paraview &

Note: Another option to open the OpenFOAM® simulation results with ParaView
without converting them to VTK; Create an empty text file in the main case
directory, name it <someName>.foam (e.g. foam.foam), and execute the
following command. This method is good for fast evaluation of the data in the
middle of the simulation or with a decomposed case in parallel simulations:

>paraview foam.foam &

Note: By putting & at the end of command, the command line will remain active
and ready for further inputs while that program is running.

3.2. Examining different meshes

Do the same for the other two meshes. Only the mesh for the first simulation is
included in the elbow example of OpenFOAM®. For the other two simulations,
the mesh should be provided by the user. For finding the tutorials on how to
create the geometry and the mesh, search the internet for “GAMBIT® elbow
mesh 2D”. The dimensions and the mesh info are provided in that tutorial. Try
to create it by using GAMBIT® (or any other similar mesh creation tools). When
you are done, you have to convert it into a 3D mesh with one cell in the z-
direction.

The comparisons of all three case results and charts are shown below.

OpenFOAM® Basic Training

Tutorial One

The Hex Fine mesh created using GAMBIT®

Pressure and velocity for different meshes at t=75 s, along the arc shown

OpenFOAM® Basic Training

Tutorial One

The comparison plots are along the line between points A (54 0 0) at the small
tube entrance and B (60 60 0) at the large tube exit part (length units are in
meter) for Tri-mesh, for other two meshes created using GAMBIT® the points
are A (22 -33 0) and B (27 30 0).

Mesh Pressure Velocity

Tri

Hex

Hex

Fine

Comparison of different mesh type results at t = 75 s

OpenFOAM® Basic Training

Tutorial One

Note: For extracting data over a line, the line should be defined in ParaView
using “Plot Over Line”, then the data over this line can be exported by choosing
Save Data from File menu in ParaView.

OpenFOAM® Basic Training

Tutorial One

