
Tutorial Nine

Parallel Processing

6th edition, April 2023

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Nine

Editorial board:

 Bahram Haddadi

 Christian Jordan

 Michael Harasek

Contributors:

 Bahram Haddadi

 Clemens Gößnitzer

 Jozsef Nagy

 Vikram Natarajan

 Sylvia Zibuschka

 Yitong Chen

Compatibility:

 OpenFOAM® v10

Cover picture from:

 Bahram Haddadi

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

 to Share — to copy, distribute and transmit the work

 to Remix — to adapt the work
Under the following conditions:

 Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

 Noncommercial — you may not use this work for commercial purposes.

 Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

 Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

 Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

 Other Rights — In no way are any of the following rights affected by the license:

 Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

 The author's moral rights;

 Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

 Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-02-2

Publisher: chemical-engineering.at

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Nine

Background

In this tutorial, we will analyze compressible fluid flow in OpenFOAM®. Parallel
processing is utilized to speed up the simulation. In this introduction part, theory
behind compressible flow, solvers for compressible flow and parallel computing
will be explained in detail.

1. Introduction to compressible flow

So far we have only considered incompressible fluid flows, however in many
situations; there may be a significant change in the density. One example of
compressible flow is the flow through a diverging-converging nozzle.
Compressibility becomes dominant in flows when the Mach number is greater
than about 0.3. The Mach number is defined as follows:

𝑀𝑎 =
𝑢

𝑐
=

𝑙𝑜𝑐𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑

When a fluid flow is compressible, temperature and pressure are affected
strongly by variations in density. It is therefore important to take into account
the linkage between pressure, temperature and density in compressible flow,
usually by applying an equation of state from thermodynamics (e.g. the ideal
gas equation).

2. Compressible flow solvers

There are two general types of solution schemes for compressible flow:
pressure-based and density-based.

2.1. Pressure-based solvers

This type of solver was historically derived from the solution approach used on
incompressible flows. They solve for the primitive variables. The discretized
momentum and energy equations are used to update velocities and energy.
The pressure is obtained by applying a pressure-correction algorithm on the
continuity and momentum equations. Density is then calculated from the
equation of state.

2.2. Density-based solvers

Density-based solvers are suitable for solving the conserved variables. Similar
to pressure-based solvers, the conversed velocity and energy terms are
updated from the discretized momentum and energy equations. We can then
solve for density from the continuity equation, afterwards we use the equation
of state to update the pressure.

In general, density based solvers are more suitable for high-speed
compressible flows with shocks. This is because density based solvers solve
for conserved quantities across the shock, so the discontinuities will not affect
the results.

OpenFOAM® Basic Training

Tutorial Nine

3. Parallel computing

Imagine if we need to tackle a complex CFD problem that involves complex
geometry, multiphase flow, turbulence and reaction, how do we adopt a
methodical computational approach to save time and cost? This is when
parallel computing comes in. Parallel computing is defined as the simultaneous
use of more than one processor to execute a program. The geometry of the
domain will be partitioned into sub-domains, with each sub-domain assigned to
a single processor. Furthermore data and computational tasks will be
partitioned and divided amongst the processors. This step is known as domain
decomposition.

Parallel computing can be carried out in two ways. One is done on a single
computer with multiple internal processors, known as a Shared Memory
Multiprocessor. The other way is achieved through a series of computers
interconnected by a network, known as a Distributed Memory Multicomputer.

3.1. Shared versus distributed memory

Shared Memory
Multiprocessor

Distributed Memory
Multicomputer

Memory
Data is saved in a global

memory that can be accessed by
all processors

Each computer has a local
memory and a processor can only

access its local memory

Data transfer
between

processors

The sender processor simply
needs to write the data in a

global variable and the receiver
can read it

Message is sent explicitly from
one computer to another using a

message passing library, e.g.
Message Passing Interface (MPI)

In OpenFOAM® the application of parallel computing can be executed using the
decomposePar command. This allows the solver to be run on multiple
processors. The workflow of parallel computation in OpenFOAM® is
summarized below:

 Division of the mesh into sub-domains

 Running of the solver in parallel

 Reconstruction of the meshes and connecting the results.

OpenFOAM® Basic Training

Tutorial Nine

compressibleInterFoam – depthCharge3D

Tutorial outline

Use the compressibleInterFoam solver, simulate the example case for 0.5 s.

Objectives

• Understanding the difference between incompressible and compressible
solvers

• Understanding parallel processing and different discretization methods

Data processing

Investigate the results in ParaView.

OpenFOAM® Basic Training

Tutorial Nine

1. Pre-processing

1.1. Copying tutorial

Copy the tutorial from following directory to your working directory:

$FOAM_TUTORIALS/multiphase/compressibleInterFoam/laminar/

depthCharge3D

1.2. 0 directory

In the 0 directory copy the alpha.water.orig, p.orig and p_rgh.orig files to
alpha.water, p and p_rgh respectively.

1.3. constant directory

Phases and common physical properties of the two phases are set in the
phaseProperties file.

// *

* * * * * *//

phases (water air);

pMin 10000;

sigma 0.07;

// *

* * * * * *//

Individual phase properties are set in physicalProperties.phase files, e.g.
physicalProperties.air.

1.4. system directory

The decomposeParDict file includes the parallel settings, such as the number
of domains (partitions) and also how the domain is going to be divided into
these subdomains for parallel processing.

// *

* * * * * *//

numberOfSubdomains 4;

method hierarchical;

simpleCoeffs

{

 n (1 4 1);

}

hierarchicalCoeffs

{

 n (1 4 1);

 order xyz;

}

manualCoeffs

{

 dataFile "";

}

OpenFOAM® Basic Training

Tutorial Nine

distributed no;

roots ();

// *

* * * * * *//

numberOfSubdomains should be equal to the number of cores used. method

should show the method to be used. In the above example, the case is

simulated with the hierarchical method and 4 processors.

If the simple method is being used, the parameter n must be changed

accordingly. The three numbers (1 4 1) indicate the number of pieces the

mesh is split into in the x, y and z directions, respectively. Their multiplication

result should be equal to numberOfSubdomains.

If the hierarchical method is being used, these parameters and the order in

which the mesh should be split up in each direction should be provided.

If the scotch method is being used, then no user-supplied parameters are

necessary except for the number of subdomains.

Note: In order to check the quality of the mesh, the checkMesh tool can be used

(run it from main case directory). If the message “Mesh OK” is displayed – the

mesh is fine and no corrections need to be done. If the mesh fails in one or
more tests, try to recreate or refine the mesh for a better mesh quality (less non-
orthogonally and skewness).

If non-orthogonal cells exist in a mesh, another option is using non-orthogonal

corrections in the fvSolution file in the algorithm sub-dictionary (e.g. PIMPLE or

PISO). Usually using 1 or 2 as nNonOrthogonalCorrectors is enough.

2. Running simulation

>blockMesh

>setFields

For running the simulation in parallel mode the computing domain needs to be
divided into subdomains and a core should be assigned to each subdomain.
This is done by following command:

>decomposePar

This decomposes the mesh according to the supplied instructions. One

possible source of error is the product of the parameters in n does not match

up to the number of the subdomains. This appears for the simple and
hierarchical methods.

After executing this command four new directories will be made in the
simulation directory (processor0, processor1, processor2 processor3), and
each subdomain calculation will be saved in the respective processor directory.

Note: When the domain is divided to subdomains in parallel processing new
boundaries are defined. The data should be exchanged with the neighbor
boundary, which it is connected to in the main domain.

OpenFOAM® Basic Training

Tutorial Nine

>mpirun -np <No of cores> solver –parallel > log

<No of cores> is the number of cores being used. solver is the solver for

this simulation. For example, if 4 cores are desired, and the solver is

compressibleInterFoam following command is used:

>mpirun -np 4 compressibleInterFoam -parallel > log

> log is the filename for saving the simulation status data, instead of printing

them to the screen. For checking the last information which is written to this file
the following command can be used during the simulation running:

>tail –f log

Note: Before running any simulation, it is important to run the top command
(type the ‘top’ command in the terminal), to check the number of cores currently
used on the machine. Check the load average. This is on the first line and
shows the average number of cores being used. There are three numbers
displayed, showing the load averages across three different time scales (one,
five and 15 minute respectively).

Add the number of cores you plan to use to this number – and you will get the
expected load average during your simulation. This number should be less than
the total number of cores in the machine – or the simulation will be slowed or
the machine will crash (if you run out of memory). If you are running on a multi
user server it is recommended to leave at least a few cores free, to allow for
any fluctuations in the machine load.

Note: top command execution can be interrupted by typing q (or ctrl+c)

The simulation can take several hours, depending on the size of the mesh and
time step size.

3. Post-processing

For exporting data for post processing, at first all the processors data should be
put together and a single combined directory for each time step was created.
By executing the following command all the cores data will be combined and
new directories for each time step will be created in the simulation main
directory:

>reconstructPar

Convert the data to ParaView format:

>foamToVTK

Note: To do the reconstruction or foamToVTK conversion from a start time until
an end time the following flags can be used:

>reconstructPar –time [start time name, e.g. 016]:[end time

name, e.g. 020]

OpenFOAM® Basic Training

Tutorial Nine

>foamToVTK –time [start time name, e.g. 016]:[end time

name, e.g. 020]

Using above commands without entering end time will do the reconstruction or
conversion from start time to the end of available data:

>reconstructPar –time [start time name, e.g. 016]:

>foamToVTK –time [start time name, e.g. 016]:

For reconstructing or converting only one time step the commands should be
used without end time and “:”:

>reconstructPar –time [time name, e.g. 016]

>foamToVTK –time [time name, e.g. 016]

OpenFOAM® Basic Training

Tutorial Nine

The simulation results are as follows:

0 s

0.05 s

0.1 s

0.15 s

0.20 s

0.25 s

0.3 s

0.4 s

0.5 s

3D depth charge, alpha = 0.5 iso-surfaces, parallel simulation

OpenFOAM® Basic Training

Tutorial Nine

4. Manual method

4.1. Case set-up and running simulation

The manual method for decomposition is slightly different from the other three.
In order to use it:

After running the blockMesh and setFields utilities, set the decomposeParDict
file as any other simulation. For decomposition method, choose either simple,
hierarchical or scotch. Set the number of cores to the same number which is
going to be used for manual.

>decomposePar –cellDist

Once the decomposition is done, check the cellDecomposition file in the
constant directory. It should have a format similar to:

// *

* * * * * *//

1024000

(

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1 ...)

// *

* * * * * *//

Note: If the above output is not displayed, but a stream of NUL characters, your
text editor is probably printing binary. To fix this, open system/controlDict, and

change the writeFormat field from binary to asci and rerun the previous

command.

The first number n after the header, but before the opening brackets, 1024000

in this example, refers to the number of points in the mesh. Within the brackets,

n lines follow. Each line contains one number between 0 and n-1, where n is

the number of cores to be used for the computation. This number refers to the
core being used to compute the corresponding cell in the points file in the
constant directory. For example, if the second line in the points file brackets

OpenFOAM® Basic Training

Tutorial Nine

reads (0.125 0 0) and the second line in the cellDecomposition directoy

reads 0, this means that the cell (0.125 0 0) will be processed by processor

0.

This cellDecomposition file can now be edited. Although this can be done
manually, it is probably not feasible for any sufficiently large mesh. The process
must thus be automated by writing a script to populate the cellDecomposition
file according to the desired processor breakdown.

When the new file is ready, save it under a different name:

>cp cellDecomposition manFile

Now, edit the decomposeParDict file. Select decomposition method manual,

and for the dataFile field in the manual coeffs range, specify the path to the

file which contains the manual decomposition. Note that OpenFOAM® searches
in the constant directory by default, in case relative paths are being used:

// *

* * * * * *//

numberOfSubdomains 4;

method manual;

simpleCoeffs

{

 n (1 4 1);

 delta 0.001;

}

hierarchicalCoeffs

{

 n (1 4 1);

 delta 0.001;

 order xyz;

}

manualCoeffs

{

 dataFile "manFile";

}

distributed no;

roots ();

// *

* * * * * *//

Delete the old processor directories, decompose the case with the new
decomposition settings and run the simulation.

4.2. Visualizing the processor breakdown

It may be interesting to visualize how exactly OpenFOAM® breaks down the
mesh. This can be easily visualized using ParaView. After running the
simulation, but before running the reconstructPar command, repeat the
following for each of the processor directories:

>cd processor<n>

OpenFOAM® Basic Training

Tutorial Nine

where n is the processor number

>foamToVTK

convert the individual processor files to VTK, next, open ParaView:

>paraview &

For each of the processor directories, perform the following steps:

- Open the VTK files in the relevant processor directory

- Double click them to open them and click on “Apply”

- The part of the mesh decomposed by that core will appear, in grey.

- Change the color in the drop-down menus in the toolbar. This is to
ensure that each individual part can be easily seen.

Once this is done for all processors, the entire mesh will appear. However, the
processor regions can now easily be seen in a different color.

In order to save this, there are two options. The first option is to take a
screenshot:

File > Save a screenshot

The second option is to save the settings and modifications as a ParaView state
file.

File > Save State

The current settings and modifications can then be easily recovered by:

File > Load State

Saving the state allows changes to be made afterwards. Saving a screenshot
keeps only a picture, while losing the ability to make changes after exiting
ParaView. Doing both is recommended.

OpenFOAM® Basic Training

Tutorial Nine

