
Tutorial Fourteen

Sampling

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Fourteen

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Benjamin Piribauer

• Yitong Chen

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Fourteen

Background

1. Importance of Sampling in CFD Simulations

In computational fluid dynamics, it is crucial to analyze simulation results
effectively to ensure accurate predictions and correct numerical behavior.
Sampling provides:

• Enhanced Debugging: Identifying issues such as unexpected flow
behaviors, numerical instability, or divergence at an early stage.

• Real-time Monitoring: Observing the evolution of flow variables without
waiting for the simulation to finish.

• Efficient Data Management: Extracting only necessary data instead of
storing large amounts of full-domain output, thereby reducing storage
requirements.

• Post-processing Flexibility: Enabling in-depth analysis and visualization
of selected flow regions using external tools such as ParaView .

2. Sampling in OpenFOAM®

This tutorial serves as a introduction to the sampling utility available in
OpenFOAM®. The sampling utility is a powerful feature that allows users to
extract data from specific surfaces or points within a simulation domain. This
extracted data can then be analyzed to understand the behavior of the
simulated flow, validate numerical results, or visualize specific regions of
interest.

Sampling in OpenFOAM® can be performed in two primary ways:

• Post-processing sampling – Data is extracted after the simulation has
completed.

• In-situ sampling – Data is collected during the simulation runtime,
allowing for real-time monitoring and debugging.

By using the sampling utility, users can examine critical parameters such as
velocity, pressure, turbulence properties, and other field variables at selected
locations, which help in gaining insights into the correctness and stability of the
numerical solution.

OpenFOAM® Basic Training

Tutorial Fourteen

fluid – shockTube

Tutorial outline

Simulate the flow along a shock tube for 0.007 s and use OpenFOAM® sampling
utility for extracting the data along a line during the simulation and after the
simulation.

Objectives

• Understand the function of sampling and how to use the sampling utility

Data processing

Import your simulation to ParaView to visualize it and analyze the extracted
data with sampling tool.

OpenFOAM® Basic Training

Tutorial Fourteen

1. Pre-processing

1.1. Copying tutorial

To test the sampling feature, we will use the shockTube tutorial covered in
Tutorial Three and extract data over a line between (-5 0 0) and (5 0 0).

$FOAM_TUTORIALS/compressible/fluid/shockTube

1.2. system directory

1.2.1. sample dictionary

The sample file can be found in the system directory.

// *

* * * * * *//

type sets;

libs (“libsampling.so”)

interpolationScheme cellPoint;

setFormat raw;

sets

(

 data

 {

 type lineUniform;

 axis x;

 start (-4.995 0 0);

 end (4.995 0 0);

 nPoints 1000;

}

);

fields (T mag(U) p);

// *

* * * * * *//

In the type the type of data to be sampled is defined, e.g. sets or surfaces.

The different options for interpolationScheme and setFormat will be

discussed in a later section.

In the sets sub-dictionary each set of data should be given a name, which is

freely chosen by the user, in this case the name is simply ‘data’. In the bracket

for the set of data, we need to specify the following criteria:

- type: specifies the method of sampling. Here uniform was chosen to

make a sample on a line with equally distributed number of points.

- axis: to define how the point coordinates are written. In this case, x

means that only the x coordinate for each point will be written.

- Start/end: the endpoints of the line-sample are defined

- nPoints: number of points on our line

Outside of the data and sets bracket in the fields we have to define which

fields we want to sample.

OpenFOAM® Basic Training

Tutorial Fourteen

1.2.2. controlDict

To have the option to sample for each time step instead of each write-interval
or sampling while the solver is running; instead of the sample dictionary
additions in the functions file (it can be also integrated into the controlDict) are
needed.

In this part one will change the functions file of the shockTube tutorial so that
our line- sampling from before will be executed while running, and per time step.

Modify the functions file as following:

// *

* * * * * *//

…

functions

{

 #includeFunc mag(U)

 linesample

 {

 type sets;

 functionObjectLibs (“libsampling.so”);

 writeControl timeStep;

 outputInterval 1;

 interpolationScheme cellPoint;

 setFormat raw;

 sets

 (

 data

 {

 type lineUniform;

 axis x;

 start (-4.995 0 0);

 end (4.995 0 0);

 nPoints 1000;

 }

);

fields (T mag(U) p);

}

}

// *

* * * * * *//

linesample sub-dictionary includes the settings for the sampling tool. Any

arbitrary name can be chosen instead of linesample. The chosen name will

be the name of the folder in the postProcessing directory after running the
solver.

Inside our linesample sub-dictionary:

- type: sets or surfaces can be chosen. More types will be covered in a

later section.

- functionObjectLibs: provides the operations needed for the sampling

tasks.

- writeControl: specifies the intervals in which sampling data should be

collected in the case of timeStep, depending on the outputInterval,

sampling data will get saved in dependence of the timeStep. In the case

OpenFOAM® Basic Training

Tutorial Fourteen

of outputInterval being equal to 1, every time step, sampling data will

be saved. Changing the interval to 2 means that data will be saved every
2 time steps.

2. Running simulation

To run the Tutorial go to your case directory in the terminal and use the following
commands:

>blockMesh

>setFields

>foamRun -solver fluid

3. Post-processing

After fluid solver finishes running, based on your sampling approach the
following steps should be performed:

3.1. sample dictionary

It is also possible to use the sample command to extract your sample-data.

>postProcess –func sample

A new folder will appear in your case directory named postProcessing and in it
a folder named sample. In this folder all the sampling data will be stored in
separate folders for each write-interval.

The postProcessing directory and all its subdirectories have been generated
after the first time step. Now it can be seen that for every time step a folder is
generated instead of only every write interval.

Extracted data using sampling tool after 0.007 s

OpenFOAM® Basic Training

Tutorial Fourteen

4. Types of sampling

There are 2 main types of sampling. The sets type, which was used in our
example above, and the surfaces type.

In the sets type of sampling different kinds of point samplings, like the line
sampling we used before, or some kind of cloud sampling are included. In the
surface type whole surfaces are sampled, like near a patch, or on a plane
defined by a point and a normal vector.

Let us discuss the similarities between the set and surface types. If the
sampling happens in the controlDict the 4 entries discussed in the controlDict
section of this tutorial need to be included for both types. On top of that, both
types need an interpolation scheme. Here only two of the schemes: cell and
cellPoint will be discussed. The cell scheme assumes that the cell centre

value as constant in the whole cell. The cellPoint scheme will carry out linear

interpolation between the cell centre and vertex values. Lastly, the field bracket
looks the same for both cases.

4.1. sets

All sets need a setFormat, for example csv, which needs to be included after

the interpolationScheme.

After that the sets sub-dictionary begins where a bracket with an arbitrary name
begins in which the sets sampling type and the geometrical location of the
sampling points will be chosen. In the following, a few of sampling types will be
discussed.

4.1.1. lineUniform

This one was used in the above example. A line from a start point to an end
point with a fixed number of points evenly distributed along it.

axis determines what is written for the point coordinate in the output file.

distance means it will only write the distance between sampled point and start

point in the file.

lineX1

 {

 type lineUniform;

 axis distance;

 start (0.0201 0.05101 0.00501);

 end (0.0601 0.05101 0.00501);

 nPoints 10;

}

4.1.2. face

This type also samples along a line from a defined start to endpoint, but only
writes in the log file for every face the line cuts.

lineX2

 {

 type face;

 axis x;

 start (0.0001 0.0525 0.00501);

 end (0.0999 0.0525 0.00501);

OpenFOAM® Basic Training

Tutorial Fourteen

}

4.1.3. cloud

The cloud type samples data at specific points defined in the point’s bracket.

somePoints

 {

 type cloud;

 axis xyz;

 points ((0.049 0.049 0.00501)(0.051 0.049 0.00501));

}

4.1.4. patchSeed

The patchSeed sampling type is used for sampling patches of the type wall.

One can for example sample the surface adsorption on a wall with this type.

patchSeed

 {

 type patchSeed;

 axis xyz;

 patches (".*Wall.*");

 maxPoints 100;

}

Please note that for patches only a patch of type wall can be used. If you choose
a wrong type, nothing will be sampled and you receive no error message.

4.2. surfaces

All surfaces need a surfaceFormat specified. Practical formats would be the

vtk format, which can be opened with paraview, and the raw format, which can
be used for gnuplots. Instead of the sets bracket now a surfaces bracket must

be used and the type is of course surfaces. Inside the surfaces brackets one

can now sample an arbitrary number of surfaces, each in its own inner brackets.
The different types of surface sampling like the plane in the example below will

be discussed in the next sections.

 type surfaces;

 interpolationScheme cellPoint;

 surfaceFormat vtk;

 fields

 (

 U

);

 surfaces

 (

 yoursurfacename

 {

 type plane;

 basePoint (0.1 0.1 0.1);

 normalVector (0.1 0 0);

 triangulate false;

 }

);

4.2.1. plane

The type plane creates a flat plane with an origin in the basePoint normal to

the normalVector. This normalvector starts in the origin, not in the

OpenFOAM® Basic Training

Tutorial Fourteen

basePoint. To turn the triangulation of the surface off one has to add

triangulate false.

constantPlane

 {

 type plane; // always triangulated

 basePoint (0.0501 0.0501 0.005);

 normalVector (0.1 0.1 1);

 //- Optional: restrict to a particular zone

 // zone zone1;

 //- Optional: do not triangulate (only for surfaceFormats that support

 // polygons)

 //triangulate false;

 //interpolate true;

 }

One can also set a new origin for the basePoint and normalVector with

coordinateSystem

 {

 origin (0.0501 0.0501 0.005);

 }

4.2.2. patch

A sampling of type patch can sample data on a whole patch. Please note that

while the syntax looks the same as in the patchSeed case, also patches that

are not of type wall work. Default option will triangulate the surface; this can be
turned off with triangulate false.

walls_interpolated

 {

 type patch;

 patches (".*Wall.*");

 //interpolate true;

 // Optional: whether to leave as faces (=default) or triangulate

 // triangulate false;

 }

4.2.3. patchInternalField

Similar to the patch type, this type needs a patch on which it samples. It will

sample data that’s a certain distance away in normal direction (offsetMode

normal). There is also the option to define the distance in other ways seen in

the commented section of the code.

Note: While the sampling happens not on the patch but a distance away from
it, the geometric position of the sampled values in the output file will be written
as the position of the patch.

Once again the default triangulation can be turned off with triangulate false.

nearWalls_interpolated

 {

 // Sample cell values off patch.

 // Does not need to be the near-wall

 // cell, can be arbitrarily far away.

 type patchInternalField;

 patches (".*Wall.*");

 interpolate true;

 // Optional: specify how to obtain

 // sampling points from the patch

OpenFOAM® Basic Training

Tutorial Fourteen

 // face centres (default is 'normal')

 //

 // //- Specify distance to

 // offset in normal direction

 offsetMode normal;

 distance 0.1;

 //

 // //- Specify single uniform offset

 // offsetMode uniform;

 // offset (0 0 0.0001);

 //

 // //- Specify offset per patch face

 // offsetMode nonuniform;

 // offsets ((0 0 0.0001) (0 0 0.0002));

 // Optional: whether to leave

 // as faces (=default) or triangulate

 // triangulate false;

 }

4.2.4. triSurfaceSampling

With the triSurfaceSampling type data can be sampled in planes which are

provided as a trisurface stl file. To create such a file one can use the command
below. The command will generate a .stl file of one (or more) of your patches.

>surfaceMeshTriangulate name.stl -patches "(yourpatch)"

Here your patch needs to be replaced with the name of one of your patches
defined in the constant/polyMesh/boundary file. Starting the command without
the patches option will generate a stl file of your whole mesh boundary. Next
make a directory in the constant folder named triSurface if it does not already
exist and copy the .stl file there. In the code, you now have to specify your stl
file as the surface. For the source, the use of boundaryFaces seems to be a

good option of the stl file is one of your patches.

triSurfaceSampling

 {

 // Sampling on triSurface

 type sampledTriSurfaceMesh;

 surface integrationPlane.stl;

 source boundaryFaces;

 // What to sample: cells (nearest cell)

 // insideCells (only triangles inside cell)

 // boundaryFaces (nearest boundary face)

 interpolate true;

 }

Note: Most CAD software can export the surface of 3D drawings as stl files.

4.2.5. isoSurface

The isoSurface sampling type is quite different to what was discussed before

in this tutorial. Until now, all the sampling types had a constant position in space
and changing field values at that position were extracted. With the isoSurface

sampling, one tracks the position of a defined value in space. The example
below can be copied into the shocktube tutorials sample file (of course, it needs
all the other options needed for surface type sampling).

Using vtk for the surfaceFormat one can visualize the moving shockwave in

space. Note that both the vtk of the sampling and the whole shocktube case
can be opened together in paraview to compare the results.

OpenFOAM® Basic Training

Tutorial Fourteen

Note that the isoField needs to be a scalarfield.

interpolatedIso

 {

 // Iso surface for interpolated values only

 type isoSurface;

 // always triangulated

 isoField p;

 isoValue 9e4;

 interpolate true;

 //zone ABC;

 // Optional: zone only

 //exposedPatchName fixedWalls;

 // Optional: zone only

 // regularise false;

 // Optional: do not simplify

 // mergeTol 1e-10;

 // Optional: fraction of mesh bounding box

 // to merge points (default=1e-6)

 }

4.2.6. isoSurfaceCell

The isoSurfaceCell type is very similar to the one we discussed before, but

this one does not cross any cell with its surface and does not interpolate values.

constantIso

 {

 // Iso surface for constant values.

 // Triangles guaranteed not to cross cells.

 type isoSurfaceCell;

 // always triangulated

 isoField rho;

 isoValue 0.5;

 interpolate false;

 regularise false;

 // do not simplify

 // mergeTol 1e-10;

 // Optional: fraction of mesh bounding box

 // to merge points (default=1e-6)

 }

