
Tutorial Four

Discretization – Part 1

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Four

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Four

Background

1. Discretizing general transport equation terms

Understanding the process of discretization is essential in Computational Fluid
Dynamics (CFD). Discretization involves breaking down continuous differential
equations into algebraic equations that can be solved numerically. In
OpenFOAM®, various discretization schemes are used to approximate different
terms in the transport equation, which describes how physical quantities (e.g.,
velocity, temperature, or concentration) change over space and time. Below is
a detailed explanation of how each term in the transport equation is discretized.

1.1. Time derivative

The time derivative term represents how a variable evolves over time. This term
is crucial for transient simulations, where the solution changes over time.

Discretization of the time derivative such as
𝜕𝜌𝜑

𝜕𝑡
 of the transport equation is

performed by integrating it over the control volume of a grid cell. Here, the Euler
implicit time differencing scheme is explained. It is unconditionally stable, but
only first order accurate in time. Assuming linear variation of φ within a time
step gives:

 ∫
𝜕𝜌𝜑

𝜕𝑡
𝑑𝑉

𝑉

≈
𝜌𝑃

𝑛𝜑𝑃
𝑛 − 𝜌𝑃

0𝜑𝑃
0

∆𝑡
𝑉𝑃

Where 𝜑𝑛 ≡ 𝜑 (𝑡 + ∆𝑡) stands for the new value at the time step we are solving

for and 𝜑0 ≡ 𝜑(𝑡) denotes old values from the previous time step.

Higher-order schemes, such as Crank-Nicolson, offer improved accuracy but
may introduce oscillations if not applied carefully.

1.2. Convection term

The convection term describes the transport of a property due to the motion of
the fluid. Convection plays a significant role in CFD since it governs how
momentum, heat, and mass are transported within the fluid domain.

Discretization of convection terms is performed by integrating over a control
volume and transforming the volume integral into a surface integral using the
Gauss's theorem as follows:

∫ 𝒏 ∙ (𝜌𝜑𝒖)
𝐴

𝑑𝐴 ≈ ∑ 𝒏 ∙ (𝐴𝜌𝒖)𝑓𝜑𝑓 =

𝑓

∑ 𝐹𝜑𝑓

𝑓

Where F is the mass flux through the face 𝑓 defined as 𝐹 = 𝒏 ∙ (𝐴𝜌𝒖)𝑓. The

value 𝜑𝑓 on face f can be evaluated in a variety of ways, which will be covered

later in section 2. The subscript 𝑓 refers to a given face.

Choosing the right numerical scheme is essential for balancing accuracy and
stability in convection-dominated problems.

OpenFOAM® Basic Training

Tutorial Four

1.3. Diffusion term

The diffusion term represents the spread of the property due to molecular
effects such as viscosity or heat conduction. The diffusion term is a second-
order derivative term that requires careful discretization. Discretization of
diffusion terms is done in a similar way to the convection terms. After integration
over the control volume, the term is converted into a surface integral:

∫ 𝒏 ∙ (𝛤𝛻𝜑)
𝐴

𝑑𝐴 = ∑ 𝛤𝑓(𝒏 ∙ 𝛻𝑓𝜑)𝐴𝑓

𝑓

Note that the above approximation is only valid if Γ is a scalar. Here, ∇𝑓𝜑

denotes the gradient at the face 𝐴 denotes the surface area of the control
volume and 𝐴𝑓 denotes the area of a face for the control volume. However, it

does not imply a specific discretization technique. The face normal gradient can
be approximated using the scheme:

𝒏 ∙ 𝛻𝑓𝜑 =
𝜑𝑁 − 𝜑𝑃

|𝒅|

This approximation is second order accurate when the vector 𝒅 between the
center of the cell of interest P and the center of a neighboring cell N is
orthogonal to the face plane, i.e. parallel to A. In the case of non-orthogonal
meshes, a correction term could be introduced which is evaluated by
interpolating cell centered gradients obtained from Gauss integration.

1.4. Source term

Source terms, such as 𝑆𝜑of the transport equation, can be a general function

of φ. Before discretization, the term is linearized:

𝑆𝜑 = 𝜑𝑆𝐼 + 𝑆𝐸

where 𝑆𝐸 and 𝑆𝐼 may depend on φ. The term is then integrated over a control
volume as follows:

∫ 𝑆𝜑𝑑𝑉
𝑉

= 𝑆𝐼𝑉𝑃𝜑𝑃 + 𝑆𝐸𝑉𝑃

There is some freedom on exactly how a particular source term is linearized.
When deciding on the form of discretization (e.g. linear, upwind), its interaction
with other terms in the equation and its influence on boundedness and accuracy
should be examined.

2. Discretization Schemes

Discretization schemes determine how values are interpolated between cell
centers and faces to compute fluxes accurately. The choice of scheme affects
solution accuracy, numerical diffusion, and computational stability. Below are
commonly used schemes and their respective advantages and limitations.

In general, interpolation needs a flux F through a general face f, and in some
cases, one or more parameters 𝛾. The face value 𝜑𝑓 can be evaluated from the

OpenFOAM® Basic Training

Tutorial Four

values in the neighboring cells using a variety of schemes. The flux satisfies
continuity constraints, which is prerequisite to obtaining the results.

2.1. First Order Upwind Scheme

In first order upwind scheme we define φ as follows:

Note: Here we define two faces, 𝑒 and 𝑤. To obtain flux through faces e and w,

we need to look its neighbouring values at P/E and W/P respectively. The
subscripts denote the face at which the face value 𝜑 or the flux F is located at.

 𝜑𝑒 = 𝜑𝑃 𝑖𝑓, 𝐹𝑒 > 0
 𝜑𝑒 = 𝜑𝐸 𝑖𝑓, 𝐹𝑒 < 0

First Order Upwind Scheme

𝜑𝑤 is also defined similarly (Positive direction is from W to E).

2.2. Central Differencing Scheme

Here, we use linear interpolation for computing the cell face values.

𝜑𝑒 =
𝜑𝐸 + 𝜑𝑃

2
, 𝜑𝑤 =

𝜑𝑃 + 𝜑𝑊

2

Central Differencing Scheme

2.3. QUICK

QUICK stands for Quadratic Upwind Interpolation for Convective Kinetics. In
the QUICK scheme 3 point upstream-weighted quadratic interpolation are used
for cell face values.

𝑊ℎ𝑒𝑛 𝐹𝑒 > 0, 𝜑𝑒 =
6

8
𝜑𝑃 +

3

8
𝜑𝐸 −

1

8
𝜑𝑊

OpenFOAM® Basic Training

Tutorial Four

𝑊ℎ𝑒𝑛 𝐹𝑤 > 0, 𝜑𝑤 =
6

8
𝜑𝑊 +

3

8
𝜑𝑃 −

1

8
𝜑𝑊𝑊

QUICK scheme

Similar expressions can be obtained for 𝐹𝑒 < 0 and 𝐹𝑤 < 0.

Now that you know a bit more about discretization schemes, we can move on
to the tutorial. In this tutorial, the scalarTransportFoam solver is used. More
explanation of this solver can be found below.

3. functions solver

Among foamRun solver modules functions solver, which is specifically
designed to execute function objects as defined in the system/controlDict or
system/functions files. Function objects are utilities within OpenFOAM that
facilitate workflow configurations and enhance simulations by generating
additional data during runtime or post-processing. By utilizing the functions
solver module with foamRun, users can automate the execution of these
function objects, streamlining processes such as data logging, field
calculations, and custom analyses without the need to run a full simulation. This
approach optimizes computational resources and simplifies the integration of
auxiliary calculations into the simulation workflow.

One of these functions is scalarTransport which resolves a transport equation
for a passive scalar. The velocity field and boundary condition need to be
provided by the user. It works by setting the source term in the transport
equation to zero (see equation below), and then solving the equation.

𝜕(𝜌𝜑)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝜑𝒖) − 𝛻 ∙ (𝛤𝛻𝜑) = 0

OpenFOAM® Basic Training

Tutorial Four

functions Solver – shockTube

Tutorial outline

Use the functions solver, simulate 5 s of flow inside a shock tube, with 1D mesh
of 1000 cells (10 m long geometry from -5 m to 5 m). Patch with a scalar of 1
from -0.5 to 0.5. Simulate following cases:

• Set U to uniform (0 0 0). Vary diffusion coefficient (low, medium and high
value).

• Set the diffusion coefficient to zero and also U to (1 0 0) and run the
simulation in the case of pure advection using following discretization
schemes:

- upwind

- linear

- linearUpwind

- QUICK

- cubic

Objectives

• Understanding different discretization schemes.

Data processing

Import your simulation into ParaView, and plot temperature along tube length.

OpenFOAM® Basic Training

Tutorial Four

1. Pre-processing

1.1. Compile tutorial

Create a folder in your working directory:

>mkdir shockTube

Copy the following case to the created directory:

$FOAM_TUTORIALS/fluid/shockTube

In the 0 directory, create a copy of T.orig and U.orig and rename them to T and
U respectively. In the constant directory delete physicalProperties file, and in
the system directory delete all the files except for blockMeshDict and
setFieldsDict files.

From the following case:

$FOAM_TUTORIALS/incompressibleFluid/pitzDailyScalarTransp

ort

Copy physicalProperties file to the constant folder in the newly created case
constant folder. Copy controlDict, fvSchemes, fvSolution and functions files
from the above case system directory to the created case system directory.

1.2. system directory

Edit the setFieldsDict, to patch the T field to 1.0 between -0.5 m and 0.5 m and
to set the U to (0 0 0) for the whole domain. For setting U in the whole domain
to (1 0 0), just change (0 0 0) to (1 0 0):

// *

* * * * * *//

defaultFieldValues

(

volVectorFieldValue U (0 0 0)

volScalarFieldValue T 0.0

);

regions

(

boxToCell

{

box (-0.5 -1 -1) (0.5 1 1);

fieldValues

(

volScalarFieldValue T 1.0

);

}

);

// *

* * * * * *//

In the controlDict, update the endTime to 5 for 5s of simulation. As it was

mentioned before, the discretization scheme for each operator of the governing
equations can be set in fvSchemes.

OpenFOAM® Basic Training

Tutorial Four

// *

* * * * * *//

ddtSchemes

{

 default Euler;

}

gradSchemes

{

 default Gauss linear;

}

divSchemes

{

 default none;

 div(phi,T) Gauss linearUpwind grad(T);

}

laplacianSchemes

{

 default none;

 laplacian(DT,T) Gauss linear corrected;

}

interpolationSchemes

{

 default linear;

}

snGradSchemes

{

 default corrected;

}

// *

* * * * * *//

For each type of operation a default scheme can be set (e.g. for divSchemes

is set to none, it means no default scheme is set). Also a special type of

discretization for each element can be assigned (e.g. div(phi,T) it is set to

linearUpwind). For each element, where a discretization method has not been

set, the default method will be applied. If the default setting is none, no scheme

is set for that element and the simulation will crash.

Note: In fvSchemes, the schemes for the time term of the general transport
equation are set in ddtSchemes sub-dictionary. divSchemes are responsible for

the advection term schemes and laplacianSchemes set the diffusion term

schemes.

Note: divSchemes should be applied like this: Gauss + scheme. The Gauss

keyword specifies the standard finite volume discretization of Gaussian
integration which requires the interpolation of values from cell centers to face
centers. Therefore, the Gauss entry must be followed by the choice of

interpolation scheme (www.openfoam.org).

In the fvSolution file add pressure reference cell number and value to the
PIMPLE sub-dictionary, it should look like the following:

PIMPLE

{

 nNonOrthogonalCorrectors 0;

 pRefCell 0;

 pRefValue 0;

}

OpenFOAM® Basic Training

Tutorial Four

Note: pRefCell and pRefValue are dummy values that solver can start the
calculations, since there is no pressure field available.

In the functions file, just keep the line for activating the scalar transport function.
In the functions file, different functions can be called, in this case the scalar
transport function is called with using “T” as the property (scalar) to be solved,
it uses a constant diffusivity model and set the value of it by setting D (in this
case it is 0.01).

// * //

#includeFunc scalarTransport(T, diffusivity=constant, D = 0.01)

// * //

Note: By setting the diffusion coefficient “D” to zero, the case will be switched
to a pure advection simulation with no diffusion.

For part two:

• Set the diffusivity to 0, by setting the D in the functions file

• Set the velocity field to (1 0 0), either by using setFields utility or simply
in the 0/U file change the internalField to (1 0 0)

• Set different schemes in the fvSchemes file, for the div(phi, T)

2. Running simulation

>blockMesh

>setFields

>foamRun -solver functions

3. Post-processing

The simulation results are as follows.

A. Case with zero velocity (pure diffusion):

Pure diffusion with low diffusivity (0.00001) at t = 5 s

OpenFOAM® Basic Training

Tutorial Four

Pure diffusion with medium diffusivity (0.01) at t = 5 s

Pure diffusion with high diffusivity (1) at t = 5 s

B. Case with pure advection (diffusion coefficient = 0):

Scalar T along tube at t = 4 s

OpenFOAM® Basic Training

Tutorial Four

The cubic scheme predicted an unexpected rise in temperature between
around 0 to 1 m, which differs hugely from the other schemes. This can be
explained by looking at the numerical behavior of the cubic scheme. It is
operated in fourth order accuracy with unbounded solutions, which caused
another false root solution to be found. Therefore, higher order accuracy does
not always generate better results!

