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Background 

1. Discretizing general transport equation terms 

Understanding the process of discretization is essential in Computational Fluid 
Dynamics (CFD). Discretization involves breaking down continuous differential 
equations into algebraic equations that can be solved numerically. In 
OpenFOAM®, various discretization schemes are used to approximate different 
terms in the transport equation, which describes how physical quantities (e.g., 
velocity, temperature, or concentration) change over space and time. Below is 
a detailed explanation of how each term in the transport equation is discretized.  

1.1. Time derivative 

The time derivative term represents how a variable evolves over time. This term 
is crucial for transient simulations, where the solution changes over time. 

Discretization of the time derivative such as 
𝜕𝜌𝜑

𝜕𝑡
 of the transport equation is 

performed by integrating it over the control volume of a grid cell. Here, the Euler 
implicit time differencing scheme is explained. It is unconditionally stable, but 
only first order accurate in time. Assuming linear variation of φ within a time 
step gives: 

  ∫
𝜕𝜌𝜑

𝜕𝑡
𝑑𝑉

𝑉

≈
𝜌𝑃

𝑛𝜑𝑃
𝑛 − 𝜌𝑃

0𝜑𝑃
0

∆𝑡
𝑉𝑃           

Where 𝜑𝑛 ≡ 𝜑 (𝑡 + ∆𝑡) stands for the new value at the time step we are solving 

for and 𝜑0 ≡ 𝜑(𝑡) denotes old values from the previous time step. 

Higher-order schemes, such as Crank-Nicolson, offer improved accuracy but 
may introduce oscillations if not applied carefully. 

1.2. Convection term 

The convection term describes the transport of a property due to the motion of 
the fluid. Convection plays a significant role in CFD since it governs how 
momentum, heat, and mass are transported within the fluid domain. 

Discretization of convection terms is performed by integrating over a control 
volume and transforming the volume integral into a surface integral using the 
Gauss's theorem as follows: 

∫ 𝒏 ∙ (𝜌𝜑𝒖)
𝐴

𝑑𝐴 ≈ ∑ 𝒏 ∙ (𝐴𝜌𝒖)𝑓𝜑𝑓 =

𝑓

∑ 𝐹𝜑𝑓

𝑓

      

Where F is the mass flux through the face 𝑓 defined as 𝐹 = 𝒏 ∙ (𝐴𝜌𝒖)𝑓. The 

value 𝜑𝑓 on face f can be evaluated in a variety of ways, which will be covered 

later in section 2. The subscript 𝑓 refers to a given face. 

Choosing the right numerical scheme is essential for balancing accuracy and 
stability in convection-dominated problems. 
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1.3. Diffusion term 

The diffusion term represents the spread of the property due to molecular 
effects such as viscosity or heat conduction. The diffusion term is a second-
order derivative term that requires careful discretization. Discretization of 
diffusion terms is done in a similar way to the convection terms. After integration 
over the control volume, the term is converted into a surface integral: 

∫ 𝒏 ∙ (𝛤𝛻𝜑)
𝐴

𝑑𝐴 = ∑ 𝛤𝑓(𝒏 ∙ 𝛻𝑓𝜑)𝐴𝑓

𝑓

         

Note that the above approximation is only valid if Γ is a scalar. Here,  ∇𝑓𝜑 

denotes the gradient at the face 𝐴 denotes the surface area of the control 
volume and 𝐴𝑓 denotes the area of a face for the control volume. However, it 

does not imply a specific discretization technique. The face normal gradient can 
be approximated using the scheme: 

𝒏 ∙ 𝛻𝑓𝜑 =
𝜑𝑁 − 𝜑𝑃

|𝒅|
        

This approximation is second order accurate when the vector 𝒅 between the 
center of the cell of interest P and the center of a neighboring cell N is 
orthogonal to the face plane, i.e. parallel to A. In the case of non-orthogonal 
meshes, a correction term could be introduced which is evaluated by 
interpolating cell centered gradients obtained from Gauss integration. 

1.4. Source term 

Source terms, such as 𝑆𝜑of the transport equation, can be a general function 

of φ. Before discretization, the term is linearized: 

𝑆𝜑 = 𝜑𝑆𝐼 + 𝑆𝐸         

where 𝑆𝐸 and 𝑆𝐼 may depend on φ. The term is then integrated over a control 
volume as follows: 

∫ 𝑆𝜑𝑑𝑉
𝑉

= 𝑆𝐼𝑉𝑃𝜑𝑃 + 𝑆𝐸𝑉𝑃              

There is some freedom on exactly how a particular source term is linearized. 
When deciding on the form of discretization (e.g. linear, upwind), its interaction 
with other terms in the equation and its influence on boundedness and accuracy 
should be examined.  

2. Discretization Schemes 

Discretization schemes determine how values are interpolated between cell 
centers and faces to compute fluxes accurately. The choice of scheme affects 
solution accuracy, numerical diffusion, and computational stability. Below are 
commonly used schemes and their respective advantages and limitations.  

In general, interpolation needs a flux F through a general face f, and in some 
cases, one or more parameters 𝛾. The face value 𝜑𝑓 can be evaluated from the 
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values in the neighboring cells using a variety of schemes. The flux satisfies 
continuity constraints, which is prerequisite to obtaining the results.  

2.1. First Order Upwind Scheme 

In first order upwind scheme we define φ as follows: 

Note: Here we define two faces, 𝑒 and 𝑤. To obtain flux through faces e and w, 

we need to look its neighbouring values at P/E and W/P respectively. The 
subscripts denote the face at which the face value 𝜑 or the flux F is located at. 

              𝜑𝑒 = 𝜑𝑃          𝑖𝑓, 𝐹𝑒 > 0  
                    𝜑𝑒 = 𝜑𝐸           𝑖𝑓, 𝐹𝑒 < 0          

 

First Order Upwind Scheme 

𝜑𝑤 is also defined similarly (Positive direction is from W to E).  

2.2. Central Differencing Scheme 

Here, we use linear interpolation for computing the cell face values. 

𝜑𝑒 =
𝜑𝐸 + 𝜑𝑃

2
,          𝜑𝑤 =

𝜑𝑃 + 𝜑𝑊

2
           

 

Central Differencing Scheme 

 

2.3. QUICK 

QUICK stands for Quadratic Upwind Interpolation for Convective Kinetics. In 
the QUICK scheme 3 point upstream-weighted quadratic interpolation are used 
for cell face values. 

𝑊ℎ𝑒𝑛 𝐹𝑒 > 0,          𝜑𝑒 =
6

8
𝜑𝑃 +

3

8
𝜑𝐸 −

1

8
𝜑𝑊 
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𝑊ℎ𝑒𝑛 𝐹𝑤 > 0,          𝜑𝑤 =
6

8
𝜑𝑊 +

3

8
𝜑𝑃 −

1

8
𝜑𝑊𝑊 

 

QUICK scheme 

Similar expressions can be obtained for 𝐹𝑒 < 0 and 𝐹𝑤 < 0. 

Now that you know a bit more about discretization schemes, we can move on 
to the tutorial. In this tutorial, the scalarTransportFoam solver is used. More 
explanation of this solver can be found below.  

3. functions solver 

Among foamRun solver modules functions solver, which is specifically 
designed to execute function objects as defined in the system/controlDict or 
system/functions files. Function objects are utilities within OpenFOAM that 
facilitate workflow configurations and enhance simulations by generating 
additional data during runtime or post-processing. By utilizing the functions 
solver module with foamRun, users can automate the execution of these 
function objects, streamlining processes such as data logging, field 
calculations, and custom analyses without the need to run a full simulation. This 
approach optimizes computational resources and simplifies the integration of 
auxiliary calculations into the simulation workflow. 

One of these functions is scalarTransport which resolves a transport equation 
for a passive scalar. The velocity field and boundary condition need to be 
provided by the user. It works by setting the source term in the transport 
equation to zero (see equation below), and then solving the equation.  

𝜕(𝜌𝜑)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝜑𝒖) − 𝛻 ∙ (𝛤𝛻𝜑) = 0 
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functions Solver – shockTube 

Tutorial outline 

Use the functions solver, simulate 5 s of flow inside a shock tube, with 1D mesh 
of 1000 cells (10 m long geometry from -5 m to 5 m). Patch with a scalar of 1 
from -0.5 to 0.5. Simulate following cases: 

• Set U to uniform (0 0 0). Vary diffusion coefficient (low, medium and high 
value).  

• Set the diffusion coefficient to zero and also U to (1 0 0) and run the 
simulation in the case of pure advection using following discretization 
schemes:  

- upwind 

- linear 

- linearUpwind  

- QUICK  

- cubic 

Objectives 

• Understanding different discretization schemes. 

Data processing 

Import your simulation into ParaView, and plot temperature along tube length.   
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1. Pre-processing 

1.1. Compile tutorial 

Create a folder in your working directory: 

>mkdir shockTube 

Copy the following case to the created directory: 

$FOAM_TUTORIALS/fluid/shockTube  

In the 0 directory, create a copy of T.orig and U.orig and rename them to T and 
U respectively. In the constant directory delete physicalProperties file, and in 
the system directory delete all the files except for blockMeshDict and 
setFieldsDict files. 

From the following case:  

$FOAM_TUTORIALS/incompressibleFluid/pitzDailyScalarTransp

ort 

Copy physicalProperties file to the constant folder in the newly created case 
constant folder. Copy controlDict, fvSchemes, fvSolution and functions files 
from the above case system directory to the created case system directory. 

1.2. system directory 

Edit the setFieldsDict, to patch the T field to 1.0 between -0.5 m and 0.5 m and 
to set the U to (0 0 0) for the whole domain. For setting U in the whole domain 
to (1 0 0), just change (0 0 0) to (1 0 0): 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

defaultFieldValues  

(  

volVectorFieldValue U ( 0 0 0 )  

volScalarFieldValue T 0.0  

); 

regions          

(  

boxToCell  

{  

box ( -0.5 -1 -1 ) ( 0.5 1 1 ); 

  

fieldValues  

(  

volScalarFieldValue T 1.0 

);  

}  

); 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

In the controlDict, update the endTime to 5 for 5s of simulation. As it was 

mentioned before, the discretization scheme for each operator of the governing 
equations can be set in fvSchemes. 
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

ddtSchemes 

{ 

    default         Euler; 

} 

 

gradSchemes 

{ 

    default         Gauss linear; 

} 

 

divSchemes 

{ 

    default         none; 

    div(phi,T)      Gauss linearUpwind grad(T); 

} 

 

laplacianSchemes 

{ 

    default         none; 

    laplacian(DT,T) Gauss linear corrected; 

} 

 

interpolationSchemes 

{ 

    default         linear; 

} 

 

snGradSchemes 

{ 

    default         corrected; 

} 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

For each type of operation a default scheme can be set (e.g. for divSchemes 

is set to none, it means no default scheme is set). Also a special type of 

discretization for each element can be assigned (e.g. div(phi,T) it is set to 

linearUpwind). For each element, where a discretization method has not been 

set, the default method will be applied. If the default setting is none, no scheme 

is set for that element and the simulation will crash. 

Note: In fvSchemes, the schemes for the time term of the general transport 
equation are set in ddtSchemes sub-dictionary. divSchemes are responsible for 

the advection term schemes and laplacianSchemes set the diffusion term 

schemes.  

Note: divSchemes should be applied like this: Gauss + scheme. The Gauss 

keyword specifies the standard finite volume discretization of Gaussian 
integration which requires the interpolation of values from cell centers to face 
centers. Therefore, the Gauss entry must be followed by the choice of 

interpolation scheme (www.openfoam.org). 

In the fvSolution file add pressure reference cell number and value to the 
PIMPLE sub-dictionary, it should look like the following: 

PIMPLE 

{ 

    nNonOrthogonalCorrectors 0; 

    pRefCell 0; 

    pRefValue 0; 

} 
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Note: pRefCell and pRefValue are dummy values that solver can start the 
calculations, since there is no pressure field available. 

In the functions file, just keep the line for activating the scalar transport function. 
In the functions file, different functions can be called, in this case the scalar 
transport function is called with using “T” as the property (scalar) to be solved, 
it uses a constant diffusivity model and set the value of it by setting D (in this 
case it is 0.01). 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

#includeFunc scalarTransport(T, diffusivity=constant, D = 0.01) 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

Note: By setting the diffusion coefficient “D” to zero, the case will be switched 
to a pure advection simulation with no diffusion. 

For part two: 

• Set the diffusivity to 0, by setting the D in the functions file 

• Set the velocity field to (1 0 0), either by using setFields utility or simply 
in the 0/U file change the internalField to (1 0 0) 

• Set different schemes in the fvSchemes file, for the div(phi, T) 

2. Running simulation 

>blockMesh 

>setFields 

>foamRun -solver functions 

3. Post-processing 

The simulation results are as follows. 

A. Case with zero velocity (pure diffusion): 

 

Pure diffusion with low diffusivity (0.00001) at t = 5 s 
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Pure diffusion with medium diffusivity (0.01) at t = 5 s 

 

Pure diffusion with high diffusivity (1) at t = 5 s 

B. Case with pure advection (diffusion coefficient = 0): 

 

Scalar T along tube at t = 4 s 
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The cubic scheme predicted an unexpected rise in temperature between 
around 0 to 1 m, which differs hugely from the other schemes. This can be 
explained by looking at the numerical behavior of the cubic scheme. It is 
operated in fourth order accuracy with unbounded solutions, which caused 
another false root solution to be found. Therefore, higher order accuracy does 
not always generate better results! 


