
Tutorial Five

Discretization – part 2

Bahram Haddadi

7th edition, March 2025

OpenFOAM® Basic Training

Tutorial Five

Contributors:

• Bahram Haddadi

• Christian Jordan

• Michael Harasek

• Clemens Gößnitzer

• Sylvia Zibuschka

• Yitong Chen

• Vikram Natarajan

• Jozsef Nagy

Technische Universität Wien

Institute of Chemical, Environmental

& Bioscience Engineering

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work
Under the following conditions:

• Attribution — you must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that, they endorse you or your use of the
work).

• Noncommercial — you may not use this work for commercial purposes.

• Share Alike — if you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

• Notice — for any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM®

trademark.

Available from: www.fluiddynamics.at

OpenFOAM® Basic Training

Tutorial Five

Background

1. Properties of discretization schemes

When performing numerical simulations, it is crucial to choose the right
discretization scheme to ensure physically realistic results. The effectiveness
of a discretization scheme depends on several key properties, including
conservativeness, boundedness, and transportiveness. Understanding these
properties helps in selecting the appropriate scheme for a given problem in
Computational Fluid Dynamics (CFD). These properties also influence the
numerical accuracy, stability, and efficiency of the simulation.

1.1. Conservativeness

A discretization scheme is conservative if it ensures that the total amount of a
transported quantity (e.g., mass, momentum, energy) is preserved within the
solution domain. This property is fundamental for obtaining physically
meaningful results in fluid dynamics and preventing artificial gain or loss of the
transported variable.

To achieve conservativeness, the flux balance across each control volume
must be maintained. Mathematically, this means:

• The flux of φ leaving a control volume across a certain face must equal
the flux entering the adjacent control volume through the same face.

• The discretization scheme should represent the flux through a common
face consistently across adjacent control volumes.

A scheme that violates conservativeness can lead to unphysical results, such
as artificial creation or loss of mass or energy. Finite volume methods naturally
ensure conservation by integrating the governing equations over control
volumes, ensuring that what exits one control volume enters the next.

1.2. Boundedness

Most numerical solvers use iterative techniques to obtain the solution at each
node. The solver starts with an initial guess and updates the values until
convergence is achieved. To ensure a stable and physically meaningful
solution, the discretization scheme must satisfy boundedness criteria.

A bounded solution means that the numerical values of φ remain within
reasonable limits, avoiding unrealistic oscillations or negative concentrations,
which would be non-physical.

The sufficient condition for condition for boundedness is:

∑|𝑎𝑛𝑏|

|𝑎᾿𝑃|
 {

≤ 1 𝑎𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠
< 1 𝑎𝑡 𝑜𝑛𝑒 𝑛𝑜𝑑𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡

Here 𝑎᾿𝑃 is the net coefficient of the central node P (i.e. 𝑎᾿𝑃 − 𝑆𝑃), 𝑎𝑛𝑏 are the
coefficient of the neighbouring nodes. If the condition is satisfied, the resulting
matrix of coefficients is diagonally dominant. We need the net coefficients to be

OpenFOAM® Basic Training

Tutorial Five

as large as possible; this means that 𝑆𝑃 should be always negative. If this is the

case, 𝑆𝑃 becomes positive due to the modulus sign and adds to 𝑎𝑃.

1.3. Transportiveness

Transportiveness refers to the ability of a discretization scheme to correctly
account for the dominant transport mechanism in a problem. This is assessed
using the Peclet number (Pe), which measures the relative strength of
convection versus diffusion:

𝑃𝑒 =
𝑁𝑐𝑜𝑛𝑣

𝑁𝑑𝑖𝑓𝑓

=
𝐿𝑈

𝐷

Note: L is a characteristic length scale, U is the velocity magnitude, D is a
characteristic diffusion coefficient.

The primary goal is to ensure that the transportiveness is borne out of the
discretization scheme.

Let us consider the effect at a point P due to two constant sources of φ at nearby
points W and E on either side, in three cases.

1. When Pe = 0 (pure diffusion), the contours of φ are circles, as φ is spread
out evenly in all directions

2. As Pe increases, the contours become elliptical, as the values of φ are
influenced by convection

3. When Pe→∞, the countours become straight lines, since φ are stretched
out completely and affected only by upstream conditions

4. Transportiveness property

2. Assessing the general discretization schemes

It is useful to compare the different types of general discretization schemes
covered in Tutorial Four based on their conservativeness, boundedness and
transportiveness properties.

OpenFOAM® Basic Training

Tutorial Five

Different discretizing schemes assessment

Scheme
Conser-
vative

Bounded Accuracy
Trans-
portive

Remarks

Upwind

Yes

Unconditionally
bounded

First order Yes

Include false diffusion if
the velocity vector is not

parallel to one of the
coordinate directions

Central
Differencing

Yes
Conditionally

bounded*
Second order No

Unrealistic solutions at
large Pe number

QUICK Yes
Unconditionally

bounded
Third order Yes

Less computationally
stable. Can give small

undershoots and
overshoots

⃰ Pe should be less than 2.

3. Numerical (false) diffusion

Numerical diffusion is an artificial diffusion effect that occurs when the flow
direction is not aligned with the computational grid. It is a numerical artifact that
introduces additional diffusion into the system and primarily affects convection-
dominated flows with high Peclet numbers (Pe).

False diffusion is more prominent when using first-order upwind schemes. It
decreases with finer grids, but using higher-order schemes (e.g., QUICK) is a
more effective way to reduce it. False diffusion can distort flow structures,
leading to non-physical results, especially in high-speed flows. Using a high-
resolution grid or aligning the mesh with the flow direction can help mitigate
numerical diffusion.

 First-order upwind
Second-order

upwind

8 × 8

64 × 64

Numerical diffusion

OpenFOAM® Basic Training

Tutorial Five

4. Numerical behavior of OpenFOAM® discretization schemes

The choice of discretization scheme for this tutorial should depend critically on
the numerical behavior of the scheme. Using higher order schemes, numerical
diffusion errors can be reduced, however it requires higher computational
efforts.

Scheme Numerical behavior

upwind First order, bounded

linear Second order, unbounded

linearUpwind First/second order, bounded

QUICK Second order or higher, bounded

cubic Fourth order, unbounded

OpenFOAM® Basic Training

Tutorial Five

functions Solver – circle

Tutorial outline

Use the functions solver, do simulate the movement of a circular scalar spot
region (radius = 1 m) at the middle of a 100 × 100 cell mesh (10 m × 10 m),
then move it to the right (3 m), to the top (3 m) and diagonally.

Schematic sketch of the problem

Objectives

• Choosing the best discretization scheme.

Data processing

Examine your simulation in ParaView.

OpenFOAM® Basic Training

Tutorial Five

1. Pre-processing

1.1. Compile tutorial

Create the new case in your working directory like in tutorial four.

1.2. 0 directory

To move the circle to right change the internalField to (1 0 0) in the U file

for setting the velocity field towards the right.

1.3. system directory

Modify the blockMeshDict for creating a 2D geometry with 100 × 100 cells
mesh.

// *

* * * * * *//

convertToMeters 1;

vertices

(

 (-5 -5 -0.01)

 (5 -5 -0.01)

 (5 5 -0.01)

 (-5 5 -0.01)

 (-5 -5 0.01)

 (5 -5 0.01)

 (5 5 0.01)

 (-5 5 0.01)

);

blocks

(

 hex (0 1 2 3 4 5 6 7) (100 100 1) simpleGrading (1 1 1)

);

edges

(

);

boundary

(

 sides

 {

 type patch;

 faces

 (

 (1 2 6 5)

 (0 4 7 3)

 (3 7 6 2)

 (0 1 5 4)

);

 }

 empty

 {

 type empty;

 faces

 (

 (5 6 7 4)

 (0 3 2 1)

);

 }

);

// *

* * * * * *//

OpenFOAM® Basic Training

Tutorial Five

Choose a discretization scheme based on the results from the previous
example and set it in the fvSchemes.

In the setFieldsDict patch a circle to the middle of the geometry using the
following lines.

// *

* * * * * *//

defaultFieldValues (volScalarFieldValue T 0);

regions

(

cylinderToCell

{

 p1 (0 0 -1);

p2 (0 0 1);

 radius 0.5;

 fieldValues

(

volScalarFieldValue T 1

) ;

}

);

// *

* * * * * *//

cylinderToCell command is used to patch a cylinder to the region, p1 and p2

show the two ends of cylinder center line, in the radius the radius is set.

Check controlDict, in the first part of simulation, where the circle should move
to the right set the startFrom to startTime and startTime to 0. By a simple

calculation, it can be seen that the endTime should be 3s (to move the circle

from center to the right side). Similar calculations need to be done for the two
other parts, except the startTime is set to the endTime of previous part, and

new endTime should be that part “simulation time” plus endTime of the previous

part.

Note: In the functions file set D to zero (no diffusion!).

2. Running Simulation

>blockMesh

>setFields

>foamRun -solver functions

For running further parts (moving the circle to top, and then diagonally), in the
0 folder in the U file change the internalFiled velocity to (0 1 0) so the circle

moves up, and to (-1 -1 0) to move the circle diagonally back to the original
position.

Note: In the controdDict file, subSolverTime is set to 0 and therefore even if the
startTime is set to latestTime, the simulation will read the U file from time 0!

3. Post-processing

The simulation results are as follows:

OpenFOAM® Basic Training

Tutorial Five

1 s 2 s 3 s

4 s 5 s 6 s

7 s 8 s 9 s

Position of the circle at different time steps

