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Background 

1. Properties of discretization schemes  

When performing numerical simulations, it is crucial to choose the right 
discretization scheme to ensure physically realistic results. The effectiveness 
of a discretization scheme depends on several key properties, including 
conservativeness, boundedness, and transportiveness. Understanding these 
properties helps in selecting the appropriate scheme for a given problem in 
Computational Fluid Dynamics (CFD). These properties also influence the 
numerical accuracy, stability, and efficiency of the simulation.  

1.1. Conservativeness 

A discretization scheme is conservative if it ensures that the total amount of a 
transported quantity (e.g., mass, momentum, energy) is preserved within the 
solution domain. This property is fundamental for obtaining physically 
meaningful results in fluid dynamics and preventing artificial gain or loss of the 
transported variable. 

To achieve conservativeness, the flux balance across each control volume 
must be maintained. Mathematically, this means: 

• The flux of φ leaving a control volume across a certain face must equal 
the flux entering the adjacent control volume through the same face. 

• The discretization scheme should represent the flux through a common 
face consistently across adjacent control volumes. 

A scheme that violates conservativeness can lead to unphysical results, such 
as artificial creation or loss of mass or energy. Finite volume methods naturally 
ensure conservation by integrating the governing equations over control 
volumes, ensuring that what exits one control volume enters the next.  

1.2. Boundedness 

Most numerical solvers use iterative techniques to obtain the solution at each 
node. The solver starts with an initial guess and updates the values until 
convergence is achieved. To ensure a stable and physically meaningful 
solution, the discretization scheme must satisfy boundedness criteria. 

A bounded solution means that the numerical values of φ remain within 
reasonable limits, avoiding unrealistic oscillations or negative concentrations, 
which would be non-physical. 

The sufficient condition for condition for boundedness is: 

∑|𝑎𝑛𝑏|

|𝑎᾿𝑃|
    {

≤ 1 𝑎𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠                
< 1 𝑎𝑡 𝑜𝑛𝑒 𝑛𝑜𝑑𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡

 

Here 𝑎᾿𝑃 is the net coefficient of the central node P (i.e. 𝑎᾿𝑃 −  𝑆𝑃), 𝑎𝑛𝑏 are the 
coefficient of the neighbouring nodes. If the condition is satisfied, the resulting 
matrix of coefficients is diagonally dominant. We need the net coefficients to be 
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as large as possible; this means that 𝑆𝑃 should be always negative. If this is the 

case, 𝑆𝑃 becomes positive due to the modulus sign and adds to 𝑎𝑃. 

1.3. Transportiveness 

Transportiveness refers to the ability of a discretization scheme to correctly 
account for the dominant transport mechanism in a problem. This is assessed 
using the Peclet number (Pe), which measures the relative strength of 
convection versus diffusion: 

𝑃𝑒 =
𝑁𝑐𝑜𝑛𝑣

𝑁𝑑𝑖𝑓𝑓

=
𝐿𝑈

𝐷
 

Note: L is a characteristic length scale, U is the velocity magnitude, D is a 
characteristic diffusion coefficient. 

The primary goal is to ensure that the transportiveness is borne out of the 
discretization scheme.  

Let us consider the effect at a point P due to two constant sources of φ at nearby 
points W and E on either side, in three cases. 

1. When Pe = 0 (pure diffusion), the contours of φ are circles, as φ is spread 
out evenly in all directions 

2. As Pe increases, the contours become elliptical, as the values of φ are 
influenced by convection 

3. When Pe→∞, the countours become straight lines, since φ are stretched 
out completely and affected only by upstream conditions 

 

4. Transportiveness property 

2. Assessing the general discretization schemes 

It is useful to compare the different types of general discretization schemes 
covered in Tutorial Four based on their conservativeness, boundedness and 
transportiveness properties.  
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Different discretizing schemes assessment 

Scheme 
Conser-
vative 

Bounded Accuracy 
Trans-
portive 

Remarks 

Upwind 

 
Yes 

Unconditionally 
bounded  

First order  Yes  

Include false diffusion if 
the velocity vector is not 

parallel to one of the 
coordinate directions  

Central 
Differencing 

Yes 
Conditionally 

bounded* 
Second order No 

Unrealistic solutions at 
large Pe number 

QUICK Yes 
Unconditionally 

bounded 
Third order Yes 

Less computationally 
stable. Can give small 

undershoots and 
overshoots 

⃰ Pe should be less than 2. 

3. Numerical (false) diffusion 

Numerical diffusion is an artificial diffusion effect that occurs when the flow 
direction is not aligned with the computational grid. It is a numerical artifact that 
introduces additional diffusion into the system and primarily affects convection-
dominated flows with high Peclet numbers (Pe). 

False diffusion is more prominent when using first-order upwind schemes. It 
decreases with finer grids, but using higher-order schemes (e.g., QUICK) is a 
more effective way to reduce it. False diffusion can distort flow structures, 
leading to non-physical results, especially in high-speed flows. Using a high-
resolution grid or aligning the mesh with the flow direction can help mitigate 
numerical diffusion. 

 First-order upwind 
Second-order 

upwind 

 

8 × 8 

  

64 × 64 

  

Numerical diffusion 



 

 

OpenFOAM® Basic Training 

Tutorial Five 

 

4. Numerical behavior of OpenFOAM® discretization schemes 

The choice of discretization scheme for this tutorial should depend critically on 
the numerical behavior of the scheme. Using higher order schemes, numerical 
diffusion errors can be reduced, however it requires higher computational 
efforts.  

 

Scheme Numerical behavior 

upwind First order, bounded 

linear Second order, unbounded 

linearUpwind First/second order, bounded 

QUICK Second order or higher, bounded 

cubic Fourth order, unbounded 
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functions Solver – circle 

Tutorial outline 

Use the functions solver, do simulate the movement of a circular scalar spot 
region (radius = 1 m) at the middle of a 100 × 100 cell mesh (10 m × 10 m), 
then move it to the right (3 m), to the top (3 m) and diagonally. 

 

Schematic sketch of the problem 

Objectives 

• Choosing the best discretization scheme. 

Data processing 

Examine your simulation in ParaView.   



 

 

OpenFOAM® Basic Training 

Tutorial Five 

 

1. Pre-processing 

1.1. Compile tutorial 

Create the new case in your working directory like in tutorial four. 

1.2. 0 directory 

To move the circle to right change the internalField to (1 0 0) in the U file 

for setting the velocity field towards the right.  

1.3. system directory 

Modify the blockMeshDict for creating a 2D geometry with 100 × 100 cells 
mesh. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

convertToMeters 1; 

 

vertices 

( 

    (-5 -5 -0.01) 

    (5 -5 -0.01) 

    (5 5 -0.01) 

    (-5 5 -0.01) 

    (-5 -5 0.01) 

    (5 -5 0.01) 

    (5 5 0.01) 

    (-5 5 0.01) 

); 

blocks 

( 

    hex (0 1 2 3 4 5 6 7) (100 100 1) simpleGrading (1 1 1) 

); 

edges 

( 

); 

boundary 

( 

    sides 

    { 

        type patch; 

        faces 

        ( 

            (1 2 6 5) 

            (0 4 7 3) 

            (3 7 6 2) 

            (0 1 5 4) 

        ); 

    } 

    empty 

    { 

        type empty; 

        faces 

        ( 

            (5 6 7 4) 

            (0 3 2 1) 

        ); 

    } 

); 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 
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Choose a discretization scheme based on the results from the previous 
example and set it in the fvSchemes. 

In the setFieldsDict patch a circle to the middle of the geometry using the 
following lines. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

 

defaultFieldValues (volScalarFieldValue T 0 ); 

 

regions          

(  

cylinderToCell  

{  

 p1 ( 0 0  -1 );  

p2 ( 0 0  1 );  

 radius 0.5;      

 fieldValues  

(  

volScalarFieldValue T 1  

) ;  

}  

); 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * *// 

cylinderToCell command is used to patch a cylinder to the region, p1 and p2 

show the two ends of cylinder center line, in the radius the radius is set. 

Check controlDict, in the first part of simulation, where the circle should move 
to the right set the startFrom to startTime and startTime to 0. By a simple 

calculation, it can be seen that the endTime should be 3s (to move the circle 

from center to the right side). Similar calculations need to be done for the two 
other parts, except the startTime is set to the endTime of previous part, and 

new endTime should be that part “simulation time” plus endTime of the previous 

part. 

Note: In the functions file set D to zero (no diffusion!). 

2. Running Simulation 

>blockMesh 

>setFields 

>foamRun -solver functions 

For running further parts (moving the circle to top, and then diagonally), in the 
0 folder in the U file change the internalFiled velocity to (0 1 0) so the circle 

moves up, and to (-1 -1 0) to move the circle diagonally back to the original 
position. 

Note: In the controdDict file, subSolverTime is set to 0 and therefore even if the 
startTime is set to latestTime, the simulation will read the U file from time 0! 

3. Post-processing 

The simulation results are as follows: 
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1 s 2 s 3 s 

4 s 5 s 6 s 

7 s 8 s 9 s 

 

Position of the circle at different time steps 


