

Brief Overview of Computational Fluid Dynamics

Bahram Haddadi

© Copyright- Bahram Haddadi

www.fluiddynamics.at

What is Computational Fluid Dynamics

- Behavior of fluidic systems
 - Experimental investigations
 - Numerical approaches
 - Analytical solutions
 - Numerical representation → CFD
 - Combination of Physics and Numeric
- Computer based analysis of systems
 - fluid flow
 - Heat transfer
 - Mass transfer, ...
- Application range
 - Industrial
 - non-industrial

- Not a tool, but a science
- The technique is very powerful
 - If combined with fluid dynamics and numerics knowledge

Details

and

computational

cost

Size

0

5

B S

ystem

CFD vs. Other Numerical Methods

- Black box modeling
 - Just time resolved
 - E.g. balance calculations in a system
 - Very fast but least information provided
- Process simulation
 - Time resolved
 - One space dimension also resolved
 - Resonably fast and moderate details about the system
 - Suitable for complex industial plants and pilots
- Computational fluid dynamics
 - Time resolved
 - Fully space resolved
 - Sutable for detailed systems analysis

- Common CFD code categories
 - Commercial
 - Annual license cost
 - No/limited access to the code
 - Mostly user friendly interface and official support
 - E.g. Ansys Fluent, Ansys CFX, Star CCM+, COMSOL, ...
 - Free
 - No license cost
 - Mainly open-source
 - · Missing official support or paid support
 - E.g. OpenFOAM®
- All are built upon the same concept

- Open Field Operation And Manipulation
 - Original development: 1980s Imperial College (UK)
 - Open source CFD toolbox written in C++
 - Operating system:
 - Linux original development and best compatibility
 - Windows using Docker
 - **OSX** direct compilation or using Docker
 - Different flavours:
 - ESI version: openfoam.com v2212
 - Foundation version: openfoam.org openfoam10
 - **OpenFOAM extend**: Hevoje Jasak foam-extend-4.1
 - Released for free download (source and binary)
 - Under General Public License

www.openfoam.com

www.openfoam.org

- Advantages over commercial codes:
 - Open source and free \rightarrow No license fee
 - Highly parallel
 - Users can inspect, alter, expand the source code
 - Users have to understand and know what he/she is doing, not just "clicking"!!!
- Advantages over open source codes:
 - One of the most versatile open source CFD programs
 - All standard finite volume algorithms implemented.
 - Industrial interest
 - Large community on the internet: cfd-online.com and stackoverflow.com

Bahram Haddadi

Accumulation = Input - Output

An introduction to computational fluid dynamics – The finite volume method – 2nd Edition, Versteeg and Malalasekera 2007

Continuity	$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) = 0$	$\frac{\partial(\rho\varphi)}{\partial t}$
<i>x</i> -momentum	$\frac{\partial(\rho u)}{\partial t} + \operatorname{div}(\rho u \mathbf{u}) = -\frac{\partial p}{\partial x} + \operatorname{div}(\mu \operatorname{grad} u) + S_{Mx}$	Time derivative
<i>y</i> -momentum	$\frac{\partial(\rho v)}{\partial t} + \operatorname{div}(\rho v \mathbf{u}) = -\frac{\partial p}{\partial y} + \operatorname{div}(\mu \operatorname{grad} v) + S_{My}$	$ abla \cdot (ho \varphi oldsymbol{u})$ Convection term
<i>z</i> -momentum	$\frac{\partial(\rho w)}{\partial t} + \operatorname{div}(\rho w \mathbf{u}) = -\frac{\partial p}{\partial z} + \operatorname{div}(\mu \operatorname{grad} w) + S_{Mz}$	$\nabla \cdot (\Gamma \nabla \omega)$
Energy	$\frac{\partial(\rho i)}{\partial t} + \operatorname{div}(\rho i \mathbf{u}) = -p \operatorname{div} \mathbf{u} + \operatorname{div}(k \operatorname{grad} T) + \Phi + S_i$	Diffusion term
Equations	$p = p(\rho, T)$ and $i = i(\rho, T)$	S_{co}
of state	e.g. perfect gas $p = \rho RT$ and $i = C_v T$	Source term

An introduction to computational fluid dynamics – The finite volume method – 2nd Edition, Versteeg and Malalasekera 2007

- Mesh (grid): Converting the domain into discrete domains
- Grid cell: The small volume surrounds each node of the mesh
- Key step: integration of the transport equation over a three-dimensional control volume
- Gauss divergence theorem: Replacing volume integral of the divergence term by surface integral
 - Terms evaluated as fluxes at the surfaces
 - Ensures the conservation of fluxes entering and exiting the grid
 - Allows for easy formulation of the balances on unstructured meshes
- Time-dependency: integration with respect to time

$$\frac{\partial(\rho\varphi)}{\partial t} + \nabla \cdot (\rho\varphi \boldsymbol{u}) = \nabla \cdot (\Gamma \nabla \varphi) + S_{\varphi}$$

$$\int_{\Delta t} \frac{\partial}{\partial t} \left(\int_{CV} \rho \varphi \, dV \right) dt + \int_{\Delta t} \int_{A} \mathbf{n} \cdot (\rho \varphi \mathbf{u}) \, dA dt = \int_{\Delta t} \int_{A} \mathbf{n} \cdot (\Gamma \nabla \varphi) \, dA dt + \int_{\Delta t} \int_{CV} S_{\varphi} \, dV \, dt$$

An introduction to computational fluid dynamics – The finite volume method – 2nd Edition, Versteeg and Malalasekera 2007

- Cell: control volume created by domain discretization
- Node: grid point
- Cell center: center of a cell
- Edge: boundary of a face
- Face: boundary of a cell
 - Internal
 - Boundary
- Zone: grouping of nodes, faces, cells
- Domain: group of node, face and cell zones
- Nodes positions relative to the vertices
 - Cell centered
 - Cell vertex
 - Staggered

www.manchestercfd.co.uk/post/all-there-is-to-know-about-different-mesh-types-in-cfd

- Structured Grids
 - Cartesian
 - Grid lines are always parallel to the coordinate axes
 - Curvilinear
 - Coordinate surfaces are curved to fit boundaries
 - Orthogonality: all grid lines cross at 90°
- Block-structured Grids
 - Matching
 - The grid on the common boundaries between the regions is the same
 - Non-matching
 - Chimera (overset)

www.manchestercfd.co.uk/post/all-there-is-to-know-about-different-mesh-types-in-cfd

- Unstructured Grids
 - Triangular (tetrahedral)
 - Robust meshing algorithms
 - Quadrilateral (hexahedral)
 - Best for CFD calculations
 - Polygon (polyhedral)
 - Similar to tet, with less computational overhead
 - Hybrid
- Quad/Hex advantages vs Tri/Tet
 - Higher quality solutions for flow-aligned problems
 - Fewer cells/nodes than a comparable tri/tet mesh.
 - Reduced numerical diffusion

Triangular/tetrahedral

Polygon (polyhedral)

www.manchestercfd.co.uk/post/all-there-is-to-know-about-different-mesh-types-in-cfd

OpenFOAM® Applications and Case Structure

- Solvers
 - Solving a specific continuum mechanics problem
 - icoFoam
 - simpleFoam
 - ...
- Utilities
 - Performing pre and post processing
 - Mesh preparation: blockMesh, snappyHexMesh
 - Simulation set-up: topoSet, setFields
 - Processing the results: postProcess
 - ...

Mesh in OpenFOAM®

- Unstructured mesh design
 - Capable of handling structured
- Basic mesh generation
 - blockMesh
 - Block structured meshes
 - Curved internal and external boundaries.
 - The mesh is setup in a script (no GUI)
 - Good for simple geometries
- Advanced mesh generation
 - snappyHexMesh, cfMesh
 - Automatic mesh generator for complex geometries
 - Possibility of mesh refinement at desired regions
 - Parallel
- Mesh import
 - gambitToFoam, ansysToFoam, cfxToFoam, ...

- Starting value for the solver and once specified
 - Transient simulations
 - Initial state of the system
 - Next time step values are calculated based on these
 - Steady state simulations
 - Initial guess for the numerical system
 - Initial values will be replaced by newly calculated values
 - Better the initial values \rightarrow the faster the convergence
- Value is assigned to the center of every cell
 - A uniform value for the whole field
 - Individual value per cell
 - Patching fields
 - OpenFOAM®: setFields
 - Multi-solver solutions

- Boundary conditions will connect the simulation domain with its surroundings
 - Each property interaction with outside the domain
- The values specified are located at the boundary faces of the domain
- Three main types of boundary conditions
 - **Dirichlet**: fixed value on the boundary
 - Neumann: fixed gradient on the boundary
 - Mixed: combined fixed value and gradient
- Most boundary conditions are either steady state or transient
- Ill-defined boundary conditions
 - Non-convergence
 - Incorrect results

- Time step
 - How much the information travels across a computational grid cell
 - Too big time step
 - Information propagates through more than one grid cell
 - Numerically: Inaccurate solution divergence
 - Physically: Nonphysical results
 - Too small time step
 - Computationally expensive
- Information transport should not "overtake" the physical transport
 - Courant-Friedrichs-Lewy (CFL) condition Co
 - One-dimensional: $Co = u \frac{\Delta t}{\Delta x}$
 - Less or equal to one
 - Finer mesh \rightarrow smaller time step
 - Initial time step: maximum velocity and smallest mesh size

General transport equation

$$\frac{\partial(\rho\varphi)}{\partial t} + \nabla \cdot (\rho\varphi \boldsymbol{u}) = \nabla \cdot (\Gamma \nabla \varphi) + S_{\varphi}$$

- Time derivative
 - Integrating over volume
 - Euler implicit scheme
- Convection term
 - Integrating over volume
 - Applying Gauss's theorem
 - φ_f to be calculated \rightarrow schemes
- Diffusion term
 - Similar to convection term
 - $\nabla_f \varphi$ gradient at the face
 - Second order accurate \rightarrow d orthogonal between P and N

$$\int_{V} \frac{\partial \rho \varphi}{\partial t} dV \approx \frac{\rho_{P}^{n} \varphi_{P}^{n} - \rho_{P}^{0} \varphi_{P}^{0}}{\Delta t} V_{P}$$

$$\int_{A} \boldsymbol{n} \cdot (\rho \boldsymbol{\varphi} \boldsymbol{u}) \, dA \approx \sum_{f} \boldsymbol{n} \cdot (A \rho \boldsymbol{u})_{f} \boldsymbol{\varphi}_{f} = \sum_{f} F \boldsymbol{\varphi}_{f}$$

$$\int_{A} \boldsymbol{n} \cdot (\boldsymbol{\Gamma} \nabla \boldsymbol{\varphi}) \, dA = \sum_{f} \Gamma_{f} (\boldsymbol{n} \cdot \nabla_{f} \boldsymbol{\varphi}) A_{f}$$
$$\boldsymbol{n} \cdot \nabla_{f} \boldsymbol{\varphi} = \frac{\varphi_{N} - \varphi_{P}}{|\boldsymbol{d}|}$$

• First Order Upwind

$$\varphi_e = \varphi_P \qquad if, F_e > 0$$
$$\varphi_e = \varphi_E \qquad if, F_e < 0$$

Central Differencing Scheme

$$\varphi_e = \frac{\varphi_E + \varphi_P}{2}, \qquad \qquad \varphi_w = \frac{\varphi_P + \varphi_W}{2}$$

Quadratic Upwind Interpolation for Convective Kinetics (QUICK)

When
$$F_e > 0$$
, $\phi_e = \frac{6}{8}\phi_P + \frac{3}{8}\phi_E - \frac{1}{8}\phi_W$
When $F_w > 0$, $\phi_w = \frac{6}{8}\phi_W + \frac{3}{8}\phi_P - \frac{1}{8}\phi_{WW}$

Discritization Schemes Properties

Prerequisite for results to be physically realistic

- **Conservativeness:** flux across a certain face must be equal the adjacent control volume flux through the same face
- **Boundedness:** ensures the solution remains within certain bound limits and guarantees the solution does not exhibit unphysical or unrealistic behavior
- Transportiveness: Peclet number, *Pe*. It measures the relative strengths of convection, *N_{conv}* and diffusion, *N_{diff}*.

False diffusion: a multidimensional phenomenon and it occurs when the flow is not perpendicular to the grid lines. It is a numerically introduced diffusion and arises in convection dominated flows

 8×8

 64×64

Scheme	Conser -vative	Bounded	Accuracy	Trans- portive	Remarks
Upwind	Yes	Unconditionally bounded	First order	Yes	Include false diffusion if the velocity vector is not parallel to one of the coordinate directions
Central Differencing	Yes	Conditionally bounded [*]	Second order	No	Unrealistic solutions at large Pe number
QUICK	Yes	Unconditionally bounded	Third order	Yes	Less computationally stable. Can give small undershoots and overshoots

- Variables evaluation
 - Checker-board problem
 - The cell pressure is not considered in the pressure gradient
 - Using Staggered grid
 - Scalar
 - Pressure, temperature, density etc.
 - At ordinary nodal points
 - Vectors
 - Velocity
 - At **Staggered** grid, centered around cell faces
 - Generation of velocities at exactly the locations where they are needed

 $2\delta x$

An introduction to computational fluid dynamics, Versteeg and Malalasekera, 2007

Pressure – Velocity Coupling Algorithms

- Semi-Implicit Method for Pressure Linked Equations (SIMPLE)
 - Originally for steady state problems
 - A guess-and-correct procedure
 - SIMPLER (SIMPLE Revised) and SIMPLEC (SIMPLE Consistent)
- Pressure Implicit with Splitting of Operators (PISO)
 - Originally for unsteady compressible flows
 - Non-iterative: using one predictor and two corrector steps
- PIMPLE
 - Hybrid SIMPLE/PISO
 - PISO internal loop with SIMPLE External loops
 - Higher stability and reliability for bigger time steps
- Coupled algorithm
 - Discritized pressure and velocity equations are solved in a single matrix
 - Implicit coupling between pressure and velocity
 - Computationally more expensive
 - More stable for low quality meshes or large time steps

- Many engineering applications are turbulent
- Turbulence
 - Reynolds number (Re)
 - Highly transient phenomenon
 - Characterized by a wide range of eddy sizes
 - Fully resolve these eddies numerically
 - Obtain a full profile of the turbulent flow field
 - Computationally very expensive
 - Hence we require a turbulence model
- Turbulence modeling
 - Important feature is averaging
 - Scales of the flow that are not resolved by the grid → models need to be applied
- Turbulence resolving
 - Reynolds Average Navier Stokes (RANS)-based models
 - Large eddy simulations (LES)
 - Direct Numerical Simulation (DNS)

- Any property can be written as the sum of an average and a fluctuation \rightarrow Reynolds decomposition $\tilde{\varphi} = \Phi + \varphi$
- The average of the fluctuating component is identically zero
 - Conservation of mass

Conservation of momentum (Navier-Stokes equation)

• Conservation of passive scalars (given a scalar \tilde{e})

- New unknowns
 - 6 turbulent stresses ($\rho \overline{uu}, \rho \overline{vu}, \rho \overline{wu}, \rho \overline{uv}, \rho \overline{vv}, \rho \overline{wv}, \rho \overline{uw}, \rho \overline{vw}, \rho \overline{ww}$)
 - 3 turbulent fluxes ($\rho \overline{ue}, \rho \overline{ve}, \rho \overline{we}$)
 - Additional equations based on empirical observations \rightarrow **Turbulence Modeling** (e.g. k- ϵ , k- ω , ...)
 - Using PDE's for the turbulent stresses and fluxes
- Suitable for steady-state problems

Models – Turbulence – LES

- Physical representation
 - large eddies of the flow are dependent on the geometry
 - The smaller eddies are more universal
- Mathematical approach
 - Velocity field separated into a resolved and sub-grid part using a filter function
 - Convolution of a function with a filtering kernel
 - Large eddies explicitly resolved by the grid
 - Small eddies handled implicitly by sub grid-scale model (SGS)
- most practical (and commercial) implementations of LES use the grid itself
 - No explicit filtering is needed
- Sub grid-scale turbulence models usually employ the Boussinesq hypothesis
 - Turbulent stresses are related to the mean velocity gradients

Models – Viscosity

- Viscosity
 - Intensive property of a fluid
 - Fluid internal resistance to motion or deformation
 - Viscous fluids are less willing to flow than the less viscous fluids
- Newton's law of viscosity
 - Relationship between a fluid's shear stress and shear rate when subjected to mechanical stress
- Types of viscosity
 - Dynamic (absolute) viscosity: fluid's internal resistance to flow
 - Kinematic viscosity: ratio of dynamic viscosity to density
 - Apparent (steady shear) viscosity: shear stress ratio to shear rate
- Fluids
 - Newtonian
 - Non-Newtonian
 - Viscosity not constant (e.g. shear-rate dependent)

- Simultaneous flow of materials in different phases
 - Multiple components can be present per phase.
 - gas-liquid, gas-solid, liquid-solid, liquid-liquid and three-phase flows
- Phases (visual appearance)
 - Separated: the boundary between phases is described in detail
 - Mixed: dispersed particles as well as semi-continuous interfaces exist together
 - Dispersed: one phase is dispersed in a continuous phase
- Modeling approaches
 - Lagrangian
 - Tracking individual point particles during their movement
 - More suitable for dispersed configuration
 - Studying particle flows, e.g. in Discrete Element Method (DEM)
 - Eulerian
 - Observing fluid behavior in a given control volume
 - More suitable for fluid-fluid multiphase flows
 - CFD approaches such as Euler-Euler and Volume of Fluid

Models – Multiphase – Eulerian

- Euler-Euler approach (Multi-fluid model)
 - All phases are treated as continuous
 - The phases interact through the drag and lift forces
 - Concept of phasic volume fractions
 - Continuous functions of space and time
 - Their sum equal to one
 - A transport equation for the volume fraction is solved
 - Individual conservation equations solved per phase
- Volume of Fluid (VoF) method
 - Fraction function (C)
 - C=1, the control volume is completely filled with the chosen phase
 - C=0, the control volume is filled with a different phase
 - 0<C<1, the interface between phases is present inside the control volume
 - The flow domain is modeled on a fine grid
 - The interface to be resolved
 - To track the interface between phases:
 - All field variables are shared between the phases
 - The transport equations are solved for mixture properties
 - An advection equation for the fraction function C is solved

Parallel Processing

- Simultaneous use of more than one processor
 - CPU
 - GPU
- Save time and cost
- Computational load will be distributed among processors
 - domain
 - calculations
- Load distribution
 - Shared memory: the whole system seen as a single computer
 - Distributed memory: individual computers connected through network each seen as a computational node

	Shared Memory Multiprocessor	Distributed Memory Multicomputer
Memory	Data is saved in a global memory that can be accessed by all processors	Each computer has a local memory and a processor can only access its local memory
Data transfer between processors	The sender processor simply needs to write the data in a global variable and the receiver can read it	Message is sent explicitly from one computer to another using a message passing library, e.g. Message Passing Interface (MPI)

